CONTENTS | 1. | Introduction | 7 | |----|---|--| | 2. | State of the art | g | | 3. | Modelling and estimation of bioprocesses 3.1 Typical bioreactors and models of bioprocesses 3.1.1 Laboratory bioreactors 3.1.2 General dynamical model of bioprocesses 3.1.3 Dynamical model of a prototype bioprocess 3.1.4 Model of a lipase production process 3.2 Modelling and parameter identification for a mammalian cell culture process 3.2.1 MAb synthesis by mammalian cell culture: process description and modelling 3.2.2 PSO-based technique parameter estimation 3.2.3 Results and discussion 3.3 Nonlinear estimation of state and kinetic rates for microbial production of enzymes 3.3.1 Model of a lipase production by Candida rugosa 3.3.2 Design of an asymptotic observer for state estimation 3.3.3 On-line estimation of unknown kinetics with high gain observers 3.3.4 Simulation results 3.4 Multiple estimation of kinetics in a baker's yeast process using partial models 3.4.1 Model of baker's yeast bioprocess 3.4.2 Nonlinear observers for multiple estimation of kinetic rates 3.4.3 Simulation results and discussion | 131
142
173
183
193
211
222
263
303
373
384
404
475
535
575
595 | | 4. | Bioprocess control | 65 | | →. | 4.1 Indirect adaptive control of a fed-batch bioprocess 4.1.1 Alcoholic fermentation process model 4.1.2 On-line estimation algorithms 4.1.3 Design of the indirect adaptive control law 4.1.4 Some simulation results 4.2 Sliding mode and adaptive sliding mode control of bioprocesses 4.2.1 Linearizing sliding mode control law design 4.2.2 Adaptive sliding mode control law design 4.2.3 Adaptive sliding mode control of a wastewater treatment process inside a SBR 4.2.4 Sliding mode and adaptive sliding mode control of a lipase production process 4.3 Multivariable robust-adaptive control of a recycled wastewater treatment process 4.3.1 Dynamical model of activated sludge process and control problem statement 4.3.2 Exact feedback linearizing control and adaptive control 4.3.3 Robust-adaptive control design 4.3.4 Results and discussion | 66
67
69
72
74
75
78 | | Bi | bliography | 103 |