
SYSTEM THEORY,  

CONTROL 

AND  COMPUTING JOURNAL 

Vol. 1, No. 1, June 2021 

ISSN 2668-2966 

Editura UNIVERSITARIA 

Craiova, 2021 



CONTACT 

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL 

University of Craiova, No. 13, A.I. Cuza Street, Craiova, 200585, Dolj, Romania 

Phone: 0251 438 198 

Email: stcc.journal@ucv.ro 

Website: http://stccj.ucv.ro/ 

© 2021 – All rights reserved to Universitaria Publishing House  

The authors assume all responsibility for the ideas expressed in the materials published. 

ISSN 2668-2966 

ISSN-L 2668-2966 



III 

Editorial Team 
Editors and Publisher 

Editors 
Faculty of Automation, Computers and Electronics of The University of Craiova, Romania 

Faculty of Automation and Computers of The Politehnica University of Timișoara, Romania 

Faculty of Control Systems, Computers, Electrical and Electronics Engineering of The "Dunărea de Jos" 

University of Galați, Romania 

Faculty of Automatic Control and Computer Engineering of The "Gheorghe Asachi" Technical University of 

Iași, Romania 

Publisher 

Editura Universitaria, Str. A.I. Cuza, 13, 200585 Craiova, Romania 

https://www.editurauniversitaria.ro/ro 

Editorial Board
Editor-in-Chief 
Vladimir RĂSVAN 

Prof., PhD 

University of Craiova, Faculty of Automation, Computers and Electronics, 

Str. A.I. Cuza 13, 200585 Craiova, Romania 

Associate Editors-in-Chief 
Radu-Emil PRECUP 

Corresponding member of The Romanian Academy 

Prof., PhD 

Politehnica University of Timișoara, Department of Automation and Applied Informatics, 

Bd. Vasile Pârvan 2, 300223 Timişoara, Romania 

Vasile MANTA 

Prof., PhD 

"Gheorghe Asachi" Technical University of Iași, Faculty of Automatic Control and Computer Engineering, 

Bd. Prof. dr. doc. Dimitrie Mangeron 27, 700050 Iași, Romania 

Marian BARBU 

Prof., PhD 

"Dunărea de Jos" University of Galați, Faculty of Control Systems, Computers, Electrical and Electronics 

Engineering 

Str. Ştiinţei 2, 800210 Galaţi, Romania 

Dan SELIȘTEANU 

Prof., PhD 

University of Craiova, Faculty of Automation, Computers and Electronics, 

Str. A.I. Cuza 13, 200585 Craiova, Romania 

Field Editors  
Andrzej BARTOSZEWICZ, Technical University of Lodz, Poland 

Vincent CHARVILLAT, University of Toulouse, IRIT-ENSEEIHT, France 

Voicu GROZA, University of Ottawa, Canada 

László T. KÓCZY, Széchenyi István University, Győr, and Budapest University of Technology, Hungary 

Viorel MINZU, "Dunărea de Jos" University of Galați, Romania 

Silviu-Iulian NICULESCU, Paris-Saclay University, France 

Stefan PREITL, Politehnica University of Timișoara, Romania 

Octavian PĂSTRĂVANU, "Gheorghe Asachi" Technical University of Iași, Romania 

Imre J. RUDAS, Óbuda University, Budapest, Hungary, 

Ramon VILANOVA, Universitat Autonoma de Barcelona, Spain 

Mihail VOICU, "Gheorghe Asachi" Technical University of Iași, Romania 



IV 

Associate Editors  
Dorel AIORDĂCHIOAIE, "Dunărea de Jos" University of Galați, Romania 
Costin BĂDICĂ, University of Craiova, Romania 
Gildas BESANÇON, Grenoble Institute of Technology, France 
Sašo BLAŽIC, University of Ljubljana, Slovenia 
Eugen BOBAȘU, University of Craiova, Romania 
Antoneta Iuliana BRATCU, Grenoble Institute of Technology, France 
Marius BREZOVAN, University of Craiova, Romania 
Keith J. BURNHAM, University of Wolverhampton, UK 
David CAMACHO, Autonomous University of Madrid, Spain 
Sergiu CARAMAN, "Dunărea de Jos" University of Galați, Romania 
Oscar CASTILLO, Tijuana Institute of Technology, Mexico 
Petru CAȘCAVAL, "Gheorghe Asachi" Technical University of Iași, Romania 
Arben CELA, Paris-Est University, ESIEE Paris, France 
Daniela CERNEGA, "Dunărea de Jos" University of Galați, Romania 
Dorian COJOCARU, University of Craiova, Romania 
Antonio DOURADO, University of Coimbra, Portugal 
Ioan DUMITRACHE, University Politehnica of Bucharest, Romania 
Luminita DUMITRIU, "Dunărea de Jos" University of Galați, Romania 
Stefka FIDANOVA, Bulgarian Academy of Sciences, Bulgaria 
Florin-Gheorghe FILIP, Romanian Academy, Romania 
Adrian FILIPESCU, "Dunărea de Jos" University of Galați, Romania 
Adina Magda FLOREA, University Politehnica of Bucharest, Romania 
Giancarlo FORTINO, University of Calabria, Italy 
Radu GROSU, Vienna University of Technology, Austria 
Martin GUAY, Queen’s University, Canada 
Kevin GUELTON, Université de Reims Champagne-Ardenne, France 
Rodolfo HABER GUERRA, Center for Automation and Robotics (CSIC-UPM), Spain 
Adel HAGHANI, University of Rostock, Germany 
Jacob HAMMER, University of Florida, USA 
Zoltán HORVÁTH, Eötvös Loránd University, Hungary 
Zhongsheng HOU, Qingdao University, China 
Daniela IACOVIELLO, Sapienza University of Rome, Italy 
Przemyslaw IGNACIUK, Technical University of Lodz, Poland 
Mirjana IVANOVIĆ, University of Novi Sad, Serbia 
Zsolt Csaba JOHANYÁK, John von Neumann University, Hungary 
Alireza KARIMI, Swiss Federal Institute of Technology Lausanne, Switzerland 
Marius KLOETZER, "Gheorghe Asachi" Technical University of Iași, Romania 
Petia KOPRINKOVA-HRISTOVA, Bulgarian Academy of Sciences, Bulgaria 
Péter KORONDI, Budapest University of Technology and Economics, Hungary 
Levente KOVÁCS, Óbuda University, Budapest, Hungary 
Michal KVASNICA, Slovak University of Technology in Bratislava, Slovakia 
Hak-Keung LAM, King's College London, UK 
Ioan-Doré LANDAU, Grenoble Institute of Technology, France 
Corneliu LAZĂR, "Gheorghe Asachi" Technical University of Iași, Romania 
Mircea LAZĂR, Eindhoven University of Technology, Netherlands 
Yann LE GORREC, École Nationale Supérieure de Mécanique et des Microtechniques, France 
Jesús de LEÓN MORALES, Autonomous University of Nuevo León, Mexico 
Cristian MAHULEA, University of Zaragoza, Spain 
Mihaela MATCOVSCHI, "Gheorghe Asachi" Technical University of Iași, Romania 
Patricia MELIN, Tijuana Institute of Technology, Mexico 
Mihai MICEA, Politehnica University of Timișoara, Romania 
Liviu MICLEA, Technical University of Cluj-Napoca, Romania 
Sabine MONDIÉ, CINVESTAV-IPN, Mexico 
Ion NECOARĂ, University Politehnica of Bucharest, Romania 
Sergiu NEDEVSCHI, Technical University of Cluj-Napoca, Romania 
Sorin OLARU, Paris-Saclay University, France 
Hitay ÖZBAY, Bilkent University, Turkey 
Marcin PAPRZYCKI, Systems Research Institute, Polish Academy of Sciences, Poland 
Nicolae PARASCHIV, Petroleum-Gas University of Ploieşti, Romania 
Lăcră PAVEL, University of Toronto, Canada 



V 

Tamara PETROVIĆ, University of Zagreb, Croatia 
Stefan Wolfgang PICKL, Bundeswehr University Munich, Germany 
Marios M. POLYCARPOU, University of Cyprus, Cyprus 
Dan POPESCU, University of Craiova, Romania 
Dumitru POPESCU, University Politehnica of Bucharest, Romania 
Elvira POPESCU, University of Craiova, Romania 
Vicenç PUIG, Polytechnic University of Catalonia, Spain 
Werner PURGATHOFER, Vienna University of Technology, Austria 
Xiaobo QU, Chalmers University of Technology, Sweden 
Antonio E. B. RUANO, University of Algarve, Portugal 
Sergio Matteo SAVARESI, Polytechnic University of Milan, Italy 
Olivier SENAME, Grenoble Institute of Technology, France 
Vasile SIMA, National Institute for Research & Development in Informatics, Romania 
Xiaona SONG, Henan University of Science and Technology, China 
James C. SPALL, Johns Hopkins University, USA 
Liana STĂNESCU, University of Craiova, Romania 
Dorin ȘENDRESCU, University of Craiova, Romania 
Michael ŠEBEK, Czech Technical University in Prague, Czech Republic 
Igor ŠKRJANC, University of Ljubljana, Slovenia 
Shigemasa TAKAI, Osaka University, Japan 
Sihem TEBBANI, Paris-Saclay University, France 
Gianluca TEMPESTI, University of York, UK 
Mariana TITICĂ, University of Nantes, France 
Alain VANDE WOUWER, University of Mons, Belgium 
Antonis VARDULAKIS, Aristotle University of Thessaloniki, Greece 
Honoriu VĂLEAN, Technical University of Cluj-Napoca, Romania 
Pastora VEGA, University of Salamanca, Spain 
Ramon VILANOVA, Autonomous University of Barcelona, Spain 
Alina VODĂ, Grenoble Institute of Technology, France 
Draguna VRABIE, Pacific Northwest National Laboratory, USA 
Damir VRANČIĆ, Jožef Stefan Institute, Slovenia 
Shen YIN, Harbin Institute of Technology, China 

Executive Associate Editors 
Lucian BĂRBULESCU, PhD 

University of Craiova, Faculty of Automation, Computers and Electronics, 

Str. A.I. Cuza 13, 200585, Craiova, Romania 

Adrian BURLACU, PhD 

"Gheorghe Asachi" Technical University of Iasi, Faculty of Automatic Control and Computer Engineering 

Str. Prof. dr. doc. Dimitrie Mangeron, nr. 27, 700050, Iași, Romania 

Marius MARIAN, PhD 

University of Craiova, Faculty of Automation, Computers and Electronics, 

Str. A.I. Cuza 13, 200585, Craiova, Romania 

Raul-Cristian ROMAN, PhD 

Politehnica University of Timișoara, Department of Automation and Applied Informatics, 

Bd. Vasile Pârvan 2, 300223, Timişoara, Romania 

Răzvan ȘOLEA, PhD 

"Dunărea de Jos" University of Galați, Faculty of Control Systems, Computers, Electrical and Electronics 

Engineering, 

Str. Ştiinţei 2, 800210, Galaţi, Romania 





 FOREWORD 

In front of the reader – a new scientific journal: The System Theory, Control and 

Computing Journal. It is not quite new since it occurred from merging of  4 

journals traditionally (along some half-century) edited by Control and Computing 

Engineering  departments and faculties (schools)  from the University of Craiova, 

Technical „Gheorghe Asachi” University of Iaşi, „Dunărea de Jos” University of 

Galaţi and Politehnica University of Timişoara.  Continuing these journals in a 

merged and improved form, it aims  promoting theoretical and applied results in 

a large field of System Theory, Control and Computing (with particular reference 

to Applied Informatics and Applications in Systems and Control). From 

expression of the academic life in the aforementioned departments, this journal 

aims to become a more comprehensive publication, integrating the research 

results of a broad scientific and technical community. The access to publication 

of research results is open to researchers all over the world.

This starting issue of the new journal is a good illustration of the editorial 

intentions, assertion proven by a short glance at the 11 firstly published papers. 

Ranging from genuine Systems and Control Theory (σ-entropy in stochastic linear 

systems, nonlinear observability of polynomial dynamical systems or steady state 

motion control for mechanical systems), to Applied Control (nonlinear MPC for 

hydrostatic transmissions, Kalman filter design for distributed parameter systems 

in biotechnology, backward path tracking control for trailer systems), intelligent 

control based instrumentation (baseline removal in Gamma Spectroscopy, state 

estimation for sensor networks with low computer capabilities), applied 

informatics (logistic stability examination in serial and arborescent topologies) up 

to computer applications and software development (automatic control 

knowledge repository and automatic generation of object oriented code), the first 

issue of the new journal is a genuine promising of broadband covering scientific 

and engineering interests. 

The Editorial Board 

IX
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Laboratoire des signaux et systèmes
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Abstract—This paper presents a Baseline Removal
method in the context of spectrometry gamma. The
method implements an estimator for the full contin-
uum based on the observation of local minima. This
estimator is constructed from the statistical properties
of the signal and is therefore easily explainable. The
method involves a limited number of fixed parameters,
which allows the automation of the process. Moreover,
the method is adaptable to any peaks width, which
makes it suitable for both HPGe spectrometers and
scintillators. Application to real gamma spectrometry
measurements are presented, as well as a discussion
about the choice of the parameters, for which an ad-
justment is proposed.

Index Terms—background removal, baseline correc-
tion, gamma spectrometry, continuum estimation, peak
characterization, local minima

I. Introduction
A. Context

Gamma spectrometry is a common nuclear measure-
ment technique which can be used for the detection of
radioactivity, identification of radionuclides, and quantifi-
cation of radioactive material. Eventhough other methods
exist, in practice, the gamma spectrometry often consti-
tutes the only possible and effective technique, especially
for waste characterization [1]. As a consequence, gamma
spectrometry has become essential in the nuclear sector.

One will find in [2] a complete description of gamma
rays Physics as well as a number of details relating to
the measurement device. The result of a measurement
is a histogram, called spectrum, which spreads detected
photons by channels each corresponding to an interval of
energy. All spectra have the same structure, that is to
say a superposition of a background with peaks specific

to some radionuclides, covered by an observation noise.
Peaks are mathematically described by a mixture model,
usually Gaussian [2, section 9.6] [3, p.229] but not only
[4], which contains a great deal of useful information. On
the opposite, the background, also called continuum which
is rather regular and smooth contains few information (at
least, with regard to the peaks).

The purpose of the spectrum analysis is to estimate
the mixture parameters from the data. Consequently,
continuum is of little interest and one of the major issue
of the spectrum analysis is to isolate the mixture from
the continuum. Baseline Removal (BR) methods enable
to estimate the continuum without any consideration for
the peak mixture, then to subtract it from the spectra in
order to isolate the peak mixture. This technique can also
be found in Literature under the appellation ”background
correction”, or a mix of both expressions. However, ”base-
line” is less ambiguous than ”background” which may also
refers to the radiation from the environment. Moreover,
”removal” is more appropriate that ”correction” because
it would implies the continuum to be an error, which is
not the case.

B. State of the Art
BR techniques is is a recurrent topic in gamma spec-

trometry, but also in other spectroscopy issues [5]. From
the very beginning in the 70s to nowadays, two distinct
strategies have been brought to light: local and global.

Local Baseline Removal (LBR) methods enable to esti-
mate derive a local estimate of the continuum on a given
Region Of Interest (ROI) of the spectrum, i.e. in the
vicinity of a peak, by the observation of points of the pure
continuum at the outer left and right borders of the ROI
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[6] [7] [8] [9] [2, sections 5.4]. LBR requires to established
the ROI beforehand by the use of a Peak Detection (PD)
method.

Full Baseline Removal (FBR) methods estimate the
whole continuum of the spectrum, without introducing the
concept of ROI, and does not rely on a PD method. Among
FBR techniques, one finds filtering [10], peak erosion
[11] [12] [13] [3, p.256] [14], penalizing or regularization
criterion [15] [16] [17] [18] [19] [20] [21] [22] [23], and
observation of local minima [24] [25] [26] [27] [28] [29].

Nowadays, those propositions were naturally ranked by
the operating experience, and LBR [2, sections 5.4] cou-
pled to the PD second derivative method [30] is commonly
used and officially recommended [31] [32]. This method
chiefly draws its success from its simplicity and explain-
ability. However, it remains difficult to be automated and
may fail in the presence of Compton edges or multiplets,
i.e. mixtures of close overlapping peaks. On the other
hand, a large number of proposed global methods involve a
model for the continuum (splines, Gaussian processes etc),
which introduce an improper regularity prior: continuum
often contains discontinuities which are difficult to model.
Thus, spectrum analysis is still an active research topic.

C. Content
Beyond the performance criterion, an ideal method

should enables the automation of the analysis with a
large scope of application. It shall deal with various peaks
shapes and widths, with various radiation detectors tech-
nologies, i.e. Hyper Pure Germanium (HPGe) detectors as
well as scintillators. The method shall admit a reduced set
of parameters independent from the observation.

The central idea of the present study relies on the
following empirical observation: local minima rarely ap-
pear on peaks. Thus, it would be possible to estimate the
continuum from local minima. As mentioned in the state
of the Art, several authors have approached this idea, but
the work of Tervo et al. [27] is the most accomplished:
it enables to simplify the estimation of the continuum
without any prior nor any parameters. However, this
estimator only works with thin peaks which quickly limits
its use for real applications.

This paper takes up, corrects and extends previous de-
velopments [33]. This work presents a BR method adapted
to gamma spectrometry also based on the observation of
local minima. Fig. 1 presents the application of the method
of Tervo and of the new method on two representative
spectra. The improvement is easily noticeable on the
figure, and shows that the new method covers a much
wider range of spectra configurations (the comparison will
be detailed in part IV). The resulting process is simple to
apply. The paper is focused on the statistical phenomenon
which enables the method to give good results.

Section II, on one hand, gives a definition of the
spectrum. On the other hand, it deducts a number of
inherent signal properties on which is built the continuum

estimation procedure in section III. Section IV comments
the real spectra application, and section V concludes this
work.

II. Spectrum signal properties
This section aims at formalizing the problem and pro-

poses some general properties about a gamma spectrum
and its components.

A. Basic assumptions
Let yyy denote the observed gamma spectrum of n chan-

nels such that yyy = (y1, . . . , yn). Let mmm = (m1, . . . , mn)
denote the peaks mixture and ccc = (c1, . . . , cn) the con-
tinuum. Denoting P the Poisson’s distribution, Physics
states [2, section 5.2] yyy is a sample from a random vector
YYY = (Y1, . . . , Yn) such that:

Yk ∼ P(µk) (1)

where µµµ = mmm + ccc is the noiseless signal.
Poisson distribution is not practical to handle in literal

calculations. Denoting N the normal distribution and
assuming that the spectrum has a sufficient number of
count per channel, the following approximation is possible
[34, section 2.7.3]:

P(µk) ≈ N (µk, µk) (2)

By the properties of the Poisson distribution [34, section
13.5.5], yk is itself an estimate for µk and the associated
confidence interval with symmetric risks of level 1 − η is:

1
2χ2

2yk;η/2 ≤ µk ≤ 1
2χ2

2(yk+1);1−η/2 (3)

where χ2
v;η is the quantile of order η of a χ2 distribution

with v degrees of freedom. Using this property in order to
quantify the variance of the observation, one may assume
the following hypothesis:

Hypothesis 1: {
Yk ∼ N (µk, σ2

k)
σ2

k = yk
(4)

The issue can now be specified: knowing yyy, how to
estimate ccc? Because mmm is also unknown, the problem
is unsolvable at this stage: a prior is required. In the
paragraphs below, one is looking for a discrimination
criterion, through the definitions of peaks and continuum,
which may be used as the missing constraint.

B. Signal characterization
Let introduce the differential operator ∆xk = xk −xk−1.

The continuum is characterized by its low variations.
Thus, continuum variations are majorated:

∃β, ∀k, |∆ck| ≤ β (5)

A peak has characteristic areas. A top, at the center, has
high values and low variations. Two flanks, uprising and
downrising on both sides of the top, have high variations,
especially in comparison with continuum variations. Two

 2
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Fig. 1: Confrontation of continuum estimation methods on real spectra. On top is a HPGe spectrum, on the bottom
a scintillator spectrum. Both are plotted with a log scale. Blue lines represent the observation. Orange lines represent
the reference estimates of Tervo’s method. Black lines represent the new method results, applied with parameters
tbreak = 3, wopt = 15, wf = 11, of = 1 and w = 6 for HPGe, w = 80 for scintillator.

flats at the borders have low values and low variations.
Let denote F the set of all flanks in the spectrum. Then,
F contains all tops and flats. The borders of the areas are
thereby defined by means of a threshold α such that:

β ≤ α, ∀k ∈ F, α ≤ |∆mk| (6)

The unfixed threshold α is a necessary scaling variable,
and its choice is a matter of convention. Indeed, what
could be considered as a peak in a certain context could be
considered as a continuum contribution in another. Fig. 2
shows a mono peak signal with a constant continuum.
Choosing α = 50, resulting F areas are represented with
grey bands.

As a consequence of the previous definitions, one can
deducts a lower bound for the variations of the signal:

Property 1:

∀k ∈ F, α − β ≤ |∆µk| (7)

C. Counter variations
Let denote respectively F+ and F− the set of increasing

flanks and the set of decreasing flanks:{
F+ = {k ∈ F|α ≤ ∆mk}
F− = {k ∈ F|∆mk ≤ −α} (8)

∀k ∈ F let Fk be the probability to have a counter-
variation in yyy at k. More specifically, Fk is the probability

 3
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Fig. 2: Identification of peak’s areas on a Gaussian ex-
ample. Dark full line represents the signal µµµ, blue points
represent observations yyy, grey bands indicates F, orange
crosses represent AlimAlimAlim, red crosses represent AAA.

for yyy to decrease where mmm is increasing, or to increase
where mmm is decreasing:

Fk = P (∆Yk ≤ 0|k ∈ F+) (9)
= P (0 ≤ ∆Yk|k ∈ F−) (10)

Notice that Fk is almost the repartition function of ∆Yk ∼
N (∆µk, σ2

k + σ2
k−1) evaluated at 0. Let denote Φ(.) the

cumulative distribution function (CDF) of the standard
normal distribution. Thanks to property 1 and noticing Φ
is an increasing function, one has an upper bound for Fk:

Property 2:

∀k ∈ F, Fk ≤ Ak = Φ

 −(α − β)√
σ2

k + σ2
k−1

 (11)

On Fig. 2 is plotted AAA = (A1, ..., An) for α = 50 and β =
0. Because this signal is a simulation, one exactly knows
the value of ∆mk, which allows to evaluate the admissible
limit values for AAA as follows:

Alim
k = Φ

 −∆mk√
σ2

k + σ2
k−1

 (12)

One notes through AlimAlimAlim = (Alim
1 , ..., Alim

n ) that counter-
variations probabilities are close to zero on high variations
areas. This observation is confirmed by Fig. 3 where the
value of Ak quickly decreases.

D. Focus on local minima
Let introduce ξ, the set of indexes of yyy local minima:

ξ = {k|yk < yk−1, yk < yk+1} (13)

0 1 2 3 4 5
( )/ 2

k + 2
k 1

10 6

10 5

10 4

10 3

10 2

10 1

100

A k

Fig. 3: Ak values on a log scale.

1) Local minima bias: As shown in Fig. 4, the local
minima set is biased because local minima’s expectation
is not equal to the signal expectation. Moreover, the
figure shows that local minima are less dispersed than
the observation. It makes sense because local minima are
less likely to have a value above µ. Let φ(.) denote the
probability density function (PDF) of the standard normal
distribution.

Fig. 4: Local minima’s expectation bias for µ = 100. Black
is associated with the full signal, red is associated with its
local minima. Vertical lines indicate expectations of the
distributions.

Property 3: One has:
E(yξi

) = µξi
+ σξi

C1

C0

V(yξi
) = σ2

ξi

(
C2

C0
−
(

C1

C0

)2
) (14)
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where

Ci =
+∞∫
−∞

uiφ(u)(1 − Φ(u))2du (15)

Note that C0 is the density of ξ for a stationary signal.
Numerical integration results in the following values: C0 = 1/3

C1 ≈ −0.28209479
C2 ≈ 0.42522148

(16)

The reduction of the variance of the local minima that one
noticed on Fig. 4 may now be quantified:

V(yξi
)

σ2
ξi

= C2

C0
−
(

C1

C0

)2
≈ 0.55946721 (17)

Property 3 allows one to propose a bias correction:
Property 4: µ̂ξi is an unbiaised estimator of µξi such

that:  µ̂ξi = yξi − σξi

C1

C0
V(µ̂ξi

) = V(yξi
)

(18)

Proof of properties 3 and 4 is given in the appendix.
2) Occurrence of local minima: One have reported on

the Fig. 5 the evaluation by simulation of the probability
Pmin that a point of a linear signal, with a slope γ and
a gaussian noise with a standard deviation level σ, is a
local minima. Note that Pmin(γ/σ = 0) = C0, and Pmin

quickly decreases.

Fig. 5: Blue points represent Pmin(γ/σ) on a grid of 20
values of γ linearly spaced on [0, 100] and 20 values of
σ spaced evenly on a log scale on [1, 1000]. Black line
represents C0.

Additionally, one can deduct from property 2 an upper
bound on the probability that a local minima belongs to
F:

Property 5:

P (k ∈ F|k ∈ ξ) ≤ Ak

P (k ∈ ξ) (19)

Proof of property 5 is given in the appendix. One notices
that P (k ∈ ξ) can not be too small, because in practice
there is always a non negligible portion of local minima in a
measurement. Moreover, Fig. 5 testifies that ∀k ∈ F, Ak is
dramatically low. Therefore, P (k ∈ F|k ∈ ξ) is majorated
by a constant close to zero, which explains a remarkable
phenomenon easily noticeable through data: local minima
are absent from the flanks. It is thus possible to identify
points in F by observing ξ:

Hypothesis 2:

ξ ⊂ F (20)

Since local minima are easily observable in a given
spectrum, hypothesis 2 is a convenient criterion upon
which one may build an estimator for the continuum.

III. Continuum estimation
A. Intruders filtering

In the previous section, one identified points from F.
However, this is not exactly what one was looking for (we
are looking for ccc where mmm is omitted). Some undesirable
intruders are present in ξ, as shown in Fig. 6. Indeed, it
contains top points which must be removed. Moreover,
local minima may accidentally appear on the flank of
a significant peak. In any case, all intruders values are
substantially higher than those of the points attached to
the continuum. This gives us an opportunity to filter them.
One assumes yξi

is a sample from a random variable Y min
i

such that:
Hypothesis 3:

Y min
i ∼ N (E(yξi

), V(yξi
)) (21)

Note that Hyp. 3 is actually an approximation of the true
distribution of the local minima, but which simplifies the
definition of the process of discontinuity detection.

Let define the null hypothesis H0 :≪ there is no
discontinuity between ξi−1 and ξi ≫. Let tbreak be the
1 − η/2 order quantile of N (0, 1) and:

zi = |∆yξi |√
V(yξi

) + V(yξi−1)
(22)

By Hyp. 3, the variable zi is a z-score for H0. Conse-
quently, if tbreak ≤ zi, one can reject H0 with a confidence
η.

By selecting a threshold tbreak for this hypothesis test-
ing, one detects discontinuities in ξ, and forms groups of
continuous ξ sets. Then one observes the sign of ∆yξi

at
the groups borders. This reveals groups which levels are
higher than those of their direct neighbours. These are
intruders groups to be filtered as shown on Fig. 6.
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Fig. 6: Intruders filtering with tbreak = 1.5. Blue points
represent observations yyy, red crosses represent remaining ξ
after intruders filtering, orange points represent intruders.

B. Large peaks issue
Previous intruders filtering is able to deal with GeHP

thin peaks spectra. But when facing peaks acquired by
a scintillator, peaks are very large with respect to F
variations, and the estimator fails as shown on the top
plot in Fig. 7. A simple solution is to subsample the signal
before filtering the intruders as shown on the middle plot
in Fig. 7. This means that from the relevant spectrum, one
keep one point out of p, starting at point s. Parameter p
is the subsampling step, s the subsampling offset such as
0 ≤ s < p. In this manner, the variation rate between two
points is multiplied by p, whereas the noise level has not
changed, which allows to fix the large peaks issue.

To limit the information loss due to subsampling, one
selections subsamples of ξ successively with all possible
values of s for a given p in order to produce p subsets
of points of the continuum. Then subsets are merged as
illustrated on the bottom plot in Fig. 7.

Actually, when facing large peaks, subsampling is a trick
which allows to fall back on a thin peaks analysis issue.
An optimum choice for p depends on (i) w, the actual full
width at half maximum (FWHM) of the peaks and on
(ii) wopt, a fix ideal FWHM that one strives to retrieve.
This offers a meaningful alternative parametrization for
the estimator:

p = max
(

1, ⌊ w

wopt
⌋
)

(23)

C. Noise filtering and interpolation
In previous developments, one found points ξ in the

signal where peak levels are negligible. However, the con-
tinuum has yet to be dissociated from the observation
noise by a filtering operation. Furthermore, one has to fill

Fig. 7: Subsampling effect on outlier filtering with tbreak =
1.5. Top figure uses no subsamplings, middle figure uses
subsampling (p = 5, s = 0), bottom figure uses merged
subsamplings (p = 5). Blue line represents observations yyy,
red crosses represent remaining ξ after intruders filtering.

missing values at channels which does not present local
minima.

Every filter is built on a regularity prior for the clean
signal that one strives to retrieve. The smoothness of
the continuum suggests it can locally be described by a
polynomial expression. If continuum presents some dis-
continuities which undermines the polynomial assumption,
these are difficult to take into consideration because of our
ignorance of the continuum and one merely assumes this
event is rare and sets it aside.

The proposed filtering process at ξi then consists in
the fit of a polynom of order of on a odd window of wf

contiguous points of ξ centered in ξi. This filter is similar
to a Savitzky-Golay filter [35] but with a nonuniform
sampling step as points of ξ are not evenly spaced. In a
second time, a linear interpolation fills the missing parts
of the signal.

The selection of the appropriate window size and order
achieves a trade-off between noise reduction and avoiding
the introduction of bias. Indeed, the wider the window
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