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An everyday strategy analysed via Control Theory

Jesús Ildefonso D́ıaz and Iván Moyano

Abstract. We give a simple mathematical proof of the popular strategy ”don’t put off for
tomorrow what you can do today” by using the HUM method due to Jacques-Louis Lions for
the controllability of linear systems.
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1. Introduction

Many everyday strategies in many cultures are almost as traditional as language
and one can find a natural establishment almost in every language spoken nowadays.
The simple purpose of this short note is to analyze one of them by using the methods
of Mathematical Control Theory. The concrete question we shall consider is as follows:
when trying to make a certain task depending on time, shall we execute it immediately
or execute it later avoiding any cost? Let us recall here what says the clever languish
by Cervantes:

“no dejes para mañana lo que puedas hacer hoy”.

An English equivalent version could be as follows

“don’t put off for tomorrow what you can do today”.

In order to formulate this strategy in a mathematical manner we idealize the task
by means of the goal

x(T ) = yd, (1.1)
where yd ∈ R represents the value of the state, x(t) (assumed well defined on an
interval [t0, T )) which we want to attain. We represent our possible actions by means
of the scalar control u(t). What is peculiar to the above popular strategy is the
comparison of the ”energies” we must develop (i. e. the “energy required by our
action”) according the moment in which we execute such an action. Thus, we shall
consider the cases of a family of control operators of the form B(t)u(t) with

B(t) = χ[a,b](t) (1.2)

(the characteristic function of the interval [a, b] in which we implement our control),
where the interval [a, b], contained in a larger interval [t0, T ] (with 0 ≤ t0 < T ), is
executed in different moments. More precisely, we shall analyze the optimality of the
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122 J.I. DÍAZ AND I. MOYANO

required controls u(.) and u∗(.) associated to two possible intervals, [a, b] and [a∗, b∗] ,
of the same executing length times (i.e. b − a = b∗ − a∗) but different starting
executing times (a < a∗). Since, as it is well-known, there is no uniqueness of the
controls leading the state from a given initial datum to a final desired state, (1.1), we
shall formulate our result in a well determined subclass of controls such as the one
given trough the application of the “HUM method” due to J.L. Lions [2] (see details
in Section 2) and that we shall denote, in short, as the class of HUM-controls.

We shall assume also that our task has a ”constructive nature”. The simplest way
to formulate it is by assuming that the state x(t) solves the Cauchy Problem

(CP )
{

x
′
(t) = Ax(t) + B(t)u(t) t ∈ (t0, T ),

x(t0) = 0,

for some positive constant A > 0. In particular, we know (see [1]) that for any choice
of B(t) = χ[a,b](t), such HUM-control u does exist (i.e. problem (CP ) and (1.1)
is completely controllable), that u ∈ L∞(t0, T ) and that u minimizes the ”Hilbert
energy cost”, in the sense that if v is any other control leading also the state from the
same given initial datum to the same final desired state then

‖u‖L2(t0,T ) ≤ ‖v‖L2(t0,T ).

Our main result, which gives a simple mathematical justification to this strategy,
is the following:

Theorem. Given t0 < T, yd ∈ R, A > 0 and B, defined by (1.2), if u(.) and u∗(.)
are the HUM-controls associated to two controlling intervals, [a, b] and [a∗, b∗] with
the same executing length time (i.e. b− a = b∗ − a∗) but different starting executing
time ( a �= a∗), then a < a∗ implies that

‖u‖L∞(t0,T ) < ‖u∗‖L∞(t0,T ) (1.3)

and

‖u‖L2(t0,T ) < ‖u∗‖L2(t0,T ). (1.4)

2. Proof of the Theorem

As mentioned before the result can be proved for several classes of well-determined
subclasses of controls but here we shall follow the adaptation of the so called “HUM
method” of J.L. Lions in the spirit of the monograph Coron [1]. We consider the
“adjoint retrograde problem” defined by{

φ
′
(t) = −Aφ(t) t ∈ (t0, T ),

φ(T ) = φT .

(Obviously, in this so simple formulation, the transposition of the matrix A is trivially
AT = A ∈ R). We now solve the adjoint problem associated to a generic final datum
φT ∈ R getting that φ(t) = φT eA(T−t). The main idea of the HUM method is to use
the duality existing between the adjoint and the original problems. In our case it is
described by means of the application Λ : R→R given by Λ(φT ) = yd. Moreover we
know ([1]) that the HUM-control is defined by

u(t) = B(t)tφ(t).
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For the sake of completeness, we shall check directly and prove that, in our case, u
has the concrete expression

u(t) = χ[a,b](t)φT eA(T−t).

Without loss of generality we can assume t0 = 0. To check the complete controllability
we must verify that if we denote by A = Λ(R) to the “reachabillity set” then we have
A = R. But since yh(t) = CeAt is the general solution of the homogenous linear
equation, by using the “variation of parameters method” we can find a particular
solution yp(t)

yp(t) = c(t)eAt

with

c(t) =
∫ t

0

χ[a,b](s)φT eA(T−2s) ds,

i.e.

c(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t ≤ a,∫ t

a

φT eA(T−2s) ds if a ≤ t ≤ b,∫ b

a

φT eA(T−2s) ds if t ≥ b.

(2.5)

By imposing the initial condition y(0) = 0 we get that

y(T ) = φT

(
− 1

2A

)[
eA(T−2b) − eA(T−2a)

]
eAT =

φT

2A
e2AT

(
e−2Aa − e−2Ab

)
= yd,

which is true if and only if
yd = μφT ,

with
μ = e2AT

(
e−2Ab − e−2Aa

)
.

Obviously μ �= 0. In conclusion, we get that

Λ(φT ) = μφT = yd

As Λ is linear and μ �= 0 then Λ(R) = R. Thus we can apply the HUM Theorem of
J.L. Lions (see, e.g. [1]) and get the complete controllability.
We now proceed to compare the L∞(t0, T )-norm of the concrete expressions of the
HUM-controls u(·) and u∗(·). Since they are dependent on the value φT and there
exists a bijection between this and the value yd we obtain:

− 1
2A

φT e2AT
(
e−2Ab − e−2Aa

)
= yd, i.e. φT =

−2Ae−2AT

e−2Ab − e−2Aa
yd.

Thus

u(t) = χ[a,b](t)
2Ae−2AT

e−2Aa − e−2Ab
yd.

But
e−2Ab − e−2Aa = e−2Aa

(
e−2Al − 1

)
,

and so

u(t) = χ[a,b](t)
2AeA(2a−T−t)

1− e−2Al
yd.

Analogously

u∗(t) = χ[a′,b′](t)
2AeA(2a′−T−t)

1− e−2Al
yd.
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If we introduce now
α =

2Ayd

1− e−2Al
,

then the HUM-controls are

u(t) = χ[a,b](t)αeA(2a−T−t)

and
u∗(t) = χ[a′,b′](t)αeA(2a′−T−t),

and a direct computation leads to the strict inequality (1.3). In order to prove the
”Hilbert energy inequality” (1.4) we point out that

||u||2
L2(0,T )

=
∫ T

0

|B(s)u(s)|2ds = φ2
T

∫ b

a

e2A(T−s)ds,

and

||u∗||2L2(0,T ) =
∫ T

0

|B(s)u∗(s)|2ds = φ2
T

∫ b∗

a∗
e2A(T−s)ds.

Then, for every 0 ≤ α, β ≤ T∫ β

α

e2A(T−s)ds = −(
e2A(T−s)

2A
)s=β
s=α =

1
2A

e2AT (e−2Aα − e−Aβ) > 0.

But we can write

||u||2L2(0,T ) =
φ2

T

2A
e2AT (e−2Aa − e−A(a+l)) =

φ2
T

2A
e2AT−2Aa(1− e−Al) = Ce−2Aa,

and

||u∗||2L2(0,T ) =
φ2

T

2A
e2AT (e−2Aa∗ − e−A(a∗+l)) =

φ2
T

2A
e2AT−2Aa∗

(1− e−Al) = Ce−2Aa∗
,

with C = 1
2Ae2AT (1 − e−Al) > 0 and so, again, a < a∗ implies the strict inequality

(1.4). �

Remark. Many generalizations and variants are possible (to be published elsewhere).
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fixed points, for k = 0, . . . , 4.
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In [1] the authors use the technique of semi-tensor product in order to determine
all the transformations F : {0, 1}2 −→ {0, 1}2 which have exactly two fixed points.
In the present paper we first recall all necessary well-known prerequisites in §1. In
§2 we recall the concept of irredundant solution of a Boolean equation in n variables
over an arbitrary Boolean algebra B, introduced in [2], and carry out the complete
computation for n = 2. Also, as an application we determine explicitly the fixed
points of a Boolean transformation F : B2 −→ B2 (Proposition 2.2). In §3, by
applying Proposition 2.2 for B = {0, 1}, we determine explicitly, for k = 0, . . . , 4,
those transformations F : {0, 1}2 −→ {0, 1}2 which have exactly k fixed points. So,
as a by-product we have thus obtained a classification of the 256 transformations.

1. Introduction

In switching theory it is customary to use the name Boolean algebra for the algebra
({0, 1},∨, ·, ′, 0, 1), where x∨y = max(x, y) and x ·y = xy = min(x, y), and the name
Boolean function for the functions with arguments and values in {0, 1}.

Yet in algebra the term Boolean algebra has a more general meaning, namely
any non-trivial distributive complemented lattice, i.e., any algebra (B,∨, · , ′, 0, 1),
where the binary operations ∨, · are idempotent, commutative, associative, each of
them distributive over the other, 0 is unit for ∨, 1 is unit for ·, 0 �= 1, and x′ is
the complement of x, i.e., x ∨ x′ = 1 and x · x′ = 0. There is a plethora of Boolean
algebras in mathematics, e.g. in probability theory, functional analysis, mathematical
logic, etc. Besides the two-element Boolean algebra {0, 1}, another standard example
of Boolean algebras is provided by the fields of subsets (P(S),∪,∩, ′, ∅, S), where ′

denotes set complementation.
For an arbitrary Boolean algebra B, the term Boolean function is reserved to the

algebraic functions over B, that is, those functions which are obtained from variables
and constants of B by superpositions of the operations ∨, · and ′. It is proved that a

Received October 5, 2012.
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function f : Bn −→ B is Boolean if and only if it can be represented in the canonical
disjunctive form (CDF)

(3.1) f(x1, . . . , xn) =
∨

α1,...,αn∈{0,1} cα1...αnxα1
1 . . . xαn

n ,

where
∨

denotes iterated disjunction (like
∑

with respect to +), and xα is de-
fined by x1 = x and x0 = x′; the elements cα1...αn belong to B (in fact, cα1...αn =
f(α1, . . . , αn)). So, while there are | B ||B|n functions f : Bn −→ B, only | B |2n

of
them are Boolean functions. It follows that in the two-element Boolean algebra {0, 1}
every function f : {0, 1}n −→ {0, 1} is Boolean in the above sense, and {0, 1} is the
unique Boolean algebra with this property.

Boolean equations are equations expressed in terms of Boolean functions. Every
Boolean equation f = g is equivalent to the Boolean equation fg′ ∨ f ′g = 0, and
every system of Boolean equations fj = 0 (j = 1, . . . , m) is equivalent to the single
Boolean equation

∨m
j=1 fj = 0.

The Boolean equation in one unknown ax ∨ bx′ = 0 has solutions if and only if
ab = 0, in which case the set of solutions is the interval [b, a′] = {x ∈ B | b ≤ x ≤ a′},
where the order relation ≤ satisfies x ≤ y ⇐⇒ xy = x⇐⇒ xy′ = 0. Equivalently, the
solution set has the parametric representation x = a′t ∨ bt′.

More generally, the Boolean equation in n unknowns f(x1, . . . , xn) = 0 has so-
lutions if and only if

∏
A∈{0,1}n f(A) = 0. One of the methods for solving such an

equation is the successive elimination of variables, which has two stages. The first
one iterates the following step. One writes the equation in the form

f(x1, . . . , xn−1, 1)xn ∨ f(x1, . . . , xn−1, 0)x′
n = 0 ,

which is regarded as an equation in xn, so that the consistency condition is

f(x1, . . . , xn−1, 1)f(x1, . . . , xn−1, 0) = 0 .

This equation has (at most) n − 1 unknowns and the procedure continues until all
the variables have been eliminated. The second stage follows in reverse order the
equations constructed in the first stage, introducing in turn each of the solutions
x1, x2, . . . into the previous equation. In §2 we will explicitly apply this technique for
n = 2.

A representation theorem says that every Boolean algebra is isomorphic to a field of
sets, therefore all the set-theoretical computation rules are valid in arbitrary Boolean
algebras, e.g. the De Morgan laws. Other useful computation rules are x ∨ x′y =
x∨y, x(x′∨y) = xy, (ax∨bx′)(cx∨dx′) = acx∨bdx′, (ax∨bx′)′ = a′x∨b′x′, (axy∨
bxy′ ∨ cx′y ∨ dx′y′)′ = a′xy ∨ b′xy′ ∨ c′x′y ∨ d′x′y′, and in general formula (3.1) yields
f ′(x1, . . . , xn) =

∨
c′α1...αn

xα1
1 . . . xαn

n . In §2 and §3 we will tacitly use these rules.
Much more about Boolean functions and Boolean equations can be found in [2]

and also in [3].

2. Irredundant solutions of Boolean equations

In this section we work in an arbitrary Boolean algebra. First we present the irre-
dundant solution of a Boolean equation, devised in [2], which means a parametric
representation of the solutions of a Boolean equation in such a way that there is a
bijection between the values given to the parameters and the solutions of the equa-
tion. Then we apply this technique in order to obtain an irredundant parametric
representation of the fixed points of a Boolean transformation F : B2 −→ B2.
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Theorem 2.1. ([2], Theorem 2.9) Suppose ax ∨ bx′ = 0 is a consistent Boolean
equation, i.e., ab = 0. Then an element x ∈ B satisfies the equation if and only if it
is of the form
(2.1) x = b ∨ t, where t ≤ a′b′ ,

in which case the element t is unique.

In other words, (2.1) is the irredundant parametric solution of the equation. By
combining Theorem 2.1 with elimination of variables, one obtains an irredundant
solution of a consistent Boolean equation in n unknowns. Let us do this explicitly for
n = 2.

Proposition 2.1. Suppose
(2.2) axy ∨ bxy′ ∨ cx′y ∨ dx′y′ = 0
is a consistent Boolean equation, i.e.., abcd = 0. Then a pair (x, y) satisfies (2.2) if
and only if it is of the form
(2.3.1) x = cd ∨ t, where t ≤ (a′ ∨ b′)(c′ ∨ d′) ,

(2.3.2) y = bt ∨ d(b ∨ c′)t′ ∨ u, where u ≤ a′b′t ∨ (c′d′ ∨ a′b′cd)t′ ,

in which case the pair (t, u) is unique.

Proof. Writing (2.2) in the form
(2.4.1) (ax ∨ cx′)y ∨ (bx ∨ dx′)y′ = 0 ,

the elimination of y yields (ax ∨ cx′)(bx ∨ dx′) = 0, that is,
(2.4.2) abx ∨ cdx′ = 0 .

Since ab · cd = 0, equation (2.4.2) is consistent, therefore its irredundant solution is
(2.3.1) by Theorem 2.1.

In the second stage of the elimination process we introduce the solution (2.3.1) of
(2.4.2) into equation (2.4.1). We have x = cdt′ ∨ t, x′ = (c′ ∨ d′)t′, hence

ax ∨ cx′ = at ∨ acdt′ ∨ cd′ t′ = at ∨ c(ad ∨ d ′)t′ ,

bx ∨ dx′ = bcdt′ ∨ bt ∨ c′dt′ = bt ∨ d(bc ∨ c′)t′ ,

hence equation (2.4.1) becomes the equation in y

(2.4.1′) [at ∨ c(a ∨ d′)t′]y ∨ [bt ∨ d(b ∨ c′)t′]y′ = 0 ,

which is consistent because of (2.4.2). By applying Theorem 2.1 to equation (2.4.1′)
we get

y = bt ∨ d(b ∨ c′)t′ ∨ u ,

where

u ≤ [at ∨ c(a ∨ d ′)t′]′ [bt ∨ d(b ∨ c′)t′]′ = [a′t ∨ (c′ ∨ a′d)t′] [b′t ∨ (d ′ ∨ b′c)t′]

= a′b′t ∨ (c′ ∨ a′d)(d′ ∨ b′c)t′ = a′b′t ∨ (c′d′ ∨ a′b′cd)t′ .

So (2.3.2) is the irredundant parametric solution of (2.4.1) by Theorem 2.1.
Therefore the elimination of variables ensures that the pair (2.3.1),(2.3.2) is a

parametric solution of (2.2). If (x, y) satisfies (2.2) then x satisfies (2.4.2), hence t is
uniquely determined. Then y satisfies (2.4.1′), hence u is uniquely determined. �

A Boolean transformation is a map F : Bn −→ Bm of the form F = (f1, . . . , fm),
where f1, . . . , fm : Bn −→ B are Boolean functions. If m = n then F may have fixed
points, that is, vectors (x1, . . . , xn) ∈ Bn such that F (x1, . . . , xn) = (x1, . . . , xn). The
possible fixed points are the solutions of the system of Boolean equations fi(x1, . . . , xn)
= xi (i = 1, . . . , n), so that we can determine whether fixed points do exist and obtain
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an irredundant parametric representation of them. We carry out below the complete
computation for n = 2.

Proposition 2.2. Consider a Boolean transformation F = (f, g) : B2 −→ B2, where
(2.5.1) f(x, y) = axy ∨ bxy′ ∨ cx′y ∨ dx′y′ ,

(2.5.2) g(x, y) = pxy ∨ qxy′ ∨ rx′y ∨ sx′y′ .

Then F has fixed points if and only if
(2.6) ap ∨ bq′ ∨ c′r ∨ d′s′ = 1 ,

in which case
(2.7.1) x = (c ∨ r′)(d ∨ s) ∨ t, where t ≤ (ap ∨ bq′)(c′r ∨ d ′s′) ,

(2.7.2)
y = (b′ ∨ q)t ∨ (d ∨ s)(b′ ∨ q ∨ c′r)t′ ∨ u, where

u ≤ apbq′t ∨ [c′rd′s′ ∨ apbq′(c ∨ r′)(d ∨ s)]t′

is an irredundant parametric representation of the fixed points.

Proof. The fixed points are characterized by the equations f(x, y) = x and g(x, y) =
y. The equivalent equations fx′ ∨ f ′x = 0 and gy′ ∨ g′y = 0 are

cx′y ∨ dx′y′ ∨ a′xy ∨ b′xy′ = 0 ,

qxy′ ∨ sx′y′ ∨ p′xy ∨ r′x′y = 0 .

This system is equivalent to the single equation
(2.8) (a′ ∨ p′)xy ∨ (b′ ∨ q)xy′ ∨ (c ∨ r′)x′y ∨ (d ∨ s)x′y′ = 0 ,

whose consistency condition (a′ ∨ p′)(b′ ∨ q)(c ∨ r′)(d ∨ s) = 0 is equivalent to (2.6).
If (2.6) is fulfilled, the irredundant parametric solution of (2.8) is obtained by

applying Proposition 2.1. We see that (2.3.1) and (2.3.2) reduce to (2.7.1) and (2.7.2),
respectively. �

3. Classifying the transformations of {0, 1}2 by the number of their fixed
points

The transformations F : {0, 1}2 −→ {0, 1}2 can be classified according to the number
of their fixed points. In this section we provide explicit descriptions of the five classes
of this partition.

We recall that

F (x, y) = (axy ∨ bxy′ ∨ cx′y ∨ dx′y′, pxy ∨ qxy′ ∨ rx′y ∨ sx′y′)

and we introduce the following shorthand of notation:
(3.1) a′ ∨ p′ = A, b′ ∨ q = B, c ∨ r′ = C, d ∨ s = D ,

so that the equation (2.8) of fixed points becomes
(3.2) Axy ∨Bxy′ ∨ Cx′y ∨Dx′y′ = 0
and the consistency condition (2.6) is
(3.3) A′ ∨B′ ∨ C ′ ∨D′ = 1 .

The solution (2.3) can be written
(3.4.1) x = CD ∨ t, t ≤ α ,

(3.4.1′) α = (A′ ∨B′)(C ′ ∨D′) ,

(3.4.2) y = Bt ∨D(B ∨ C ′)t′ ∨ u, u ≤ β(t) ,

(3.4.2′) β(t) = A′B′t ∨ (C ′D′ ∨A′B′CD)t′ .
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Now everything takes the values 0,1. Since the solution provided by Proposition
2.1 is irredundant, the number of fixed points equals the number of possible values of
the pair (t, u). If α = 0 then t = 0, while if α = 1 then t takes both values 0 and 1.
For a given t, β(t) = 0 forces u = 0, while u takes both values 0 and 1 if β(t) = 1.

Notation. Let Ck denote the class of transformations F having exactly k fixed points.

Proposition 3.1. The class C0 is characterized by

A = B = C = D = 1 .

Proof. This is the negation of (3.3). �
Lemma 3.1. Equation (3.2) is consistent and α = 0 if and only if A′ ∨ B′ = CD.
This implies β(0) = A′B′ ∨ C ′D′.

Proof. The first two conditions, which are (A′∨B′)∨(C ′∨D′) = 1 and (A′∨B′)(C ′∨
D′) = 0, express the fact that A′∨B′ is the complement of C ′∨D′, that is, A′∨B′ =
(C ′ ∨D′)′ = CD. This implies A′B′ ≤ CD, hence C ′D′ ∨A′B′CD = C ′D′ ∨A′B′. �
Proposition 3.2. The class C1 is characterized by

A′B′ = C ′D′ = 0 and A′ ∨B′ = CD .

Proof. Follows by Lemma 3.1, since having a single fixed point means that the
consistency condition (3.3) is fulfilled and both t and u are fixed at 0, which happens
if and only if α = 0 and β(0) = 0. �
Proposition 3.3. The class C2 consists of two families of transformations, whose
characteristic functions are

A′B′ ∨ C ′D′ = 1 and A′ ∨B′ = CD

and
A′ = B and C ′ = D .

Proof. There exist exactly two fixed points if and only if the consistency condition
(3.3) is joined to the following alternative: either t = 0 and u is free in {0, 1}, or t is
free in {0, 1} and u is fixed to 0 no matter the value of t. This alternative is equivalent
to the following one: either α = 0 and β(0) = 1 or α = 1 and β(0) = β(1) = 0.

According to Lemma 1 the first possibility is expressed by A′ ∨ B′ = CD and
A′B′ ∨ C ′D′ = 1.

The second possibility amounts to (3.3) and A′ ∨ B′ = C ′ ∨ D′ = 1 and C ′D′ ∨
A′B′CD = A′B′ = 0. The second condition implies (3.3) and can be written AB ∨
CD = 0, while the last two conditions become C ′D′ ∨ A′B′ = 0. We have obtained
AB = A′B′ = 0 and CD = C ′D′ = 0; but xy ∨ x′y′ = 0⇐⇒ x′ = y. �
Proposition 3.4. The class C3 is characterized by

A′ ∨B′ = C ′ ∨D′ = 1 and A ∨B = C ′D′ .

Proof. It is necessary that t be free in {0, 1}, that is, A′ ∨ B′ = C ′ ∨D′ = 1. This
also implies the consistency condition (3.3).

Now there are two possibilities in order to have exactly 3 fixed points: either one
fixed point with t = 0 and 2 fixed points with t = 1, or 2 fixed points with t = 0
and one fixed point with t = 1. This amounts to either β(0) = 0 and β(1) = 1,
or β(0) = 1 and β(1) = 0. In other words, this condition is β(0) = β′(1), that is,
C ′D′ ∨A′B′CD = A ∨B. But CD = 0 by the first condition, so the latter condition
reduces to C ′D′ = A ∨B. �




