Annals of the University of Craiova Mathematics and Computer Science Series

Vol. XLIX Issue 2, December 2022

Managing Editor

Ionel Rovenţa, University of Craiova, Romania

Editorial Board

Acad. Viorel Barbu, Romanian Academy, Romania
Acad. Constantin Năstăsescu, Romanian Academy, Romania
Professor Dr. Magdalena Boureanu, University of Craiova
Professor Dr. Dumitru Buşneag, University of Craiova, Romania
Professor Dr. Philippe G. Ciarlet, French Academy of Sciences, France
Professor Dr. Constanţa Dana Constantinescu, University of Craiova, Romania
Professor Dr. Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain
Professor Dr. Gioia Failla, Mediterranea University of Reggio Calabria, Italy
Professor Dr. Giovany Figueiredo, University of Brasilia, Brazil
Professor Dr. Roberta Filippucci, University of Perugia, Italy
Professor Dr. Ionel-Dumitrel Ghiba, University "Alexandru Ioan Cuza" of Iaşi, Romania

Professor Dr. Giovanni Molica Bisci, Mediterranea University of Reggio Calabria, Italy

Dr. Robert J. Martin, University Duisburg Essen, Germany
Professor Dr. Andaluzia Matei, University of Craiova, Romania
Professor Dr. Sorin Micu, University of Craiova, Romania
Professor Dr. Gheorghe Moroşanu, Babeş-Bolyai University, Cluj-Napoca, Romania

Professor Dr. Octavian Mustafa, University of Craiova, Romania
Professor Dr. Constantin P. Niculescu, University of Craiova, Romania
Professor Dr. Paul Popescu, University of Craiova, Romania
Professor Dr. Patrizia Pucci, University of Perugia, Italy
Professor Dr. Ionel Roventa, University of Craiova, Romania
Professor Dr. Dongdong Qin, Central South University, Changsha, China
Professor Dr. Mihaela Racila, University of Craiova, Romania
Professor Dr. Mircea Sofonea, Universite de Perpignan, France
Professor Dr. Enzo Vitillaro, University of Perugia, Italy

Professor Dr. Michel Willem, Universite Catolique de Louvain, Belgium
Professor Dr. Tudor Zamfirescu, Romanian Academy, Romania
Professor Dr. Enrique Zuazua, University of Deusto, Spain, Spain
Professor Dr. Shengda Zeng, Yulin Normal University, Guangxi, China
Professor Dr. Runzhang Xu, Harbin Engineering University, China
Dr. Mihai Gabroveanu, University of Craiova, Romania

Managing Assistant Editor

Professor Dr. Mihaela Sterpu, University of Craiova, Romania
Assistant Editors
Dr. Mihai Gabroveanu, University of Craiova, Faculty of Mathematics and Computer Science, Romania

Dr. Laurenţiu-Emanuel Temereancă, University of Craiova, Romania
Dr. Maria Mălin, University of Craiova, Romania
Dr. Vasile Uţă, University of Craiova, Romania

Website Editor

Mihai Gabroveanu, University of Craiova, Romania

Volume Editors: Ionel Rovenţa, Mihaela Sterpu
Layout Editor: Mihai Gabroveanu
ISSN 1223-6934
Online ISSN 2246-9958
Web: http://inf.ucv.ro/~ami/

Printed in Romania: Editura Universitaria, Craiova, 2022
http://www.editurauniversitaria.ro

$\Delta_{\lambda}-$ Statistical convergence of order α on time scales

Büşra Nur Er and Yavuz Altin

Abstract

In this study, we introduce the notions Δ_{λ}-statistical convergence of order α (for $\alpha \in(0,1]$) and $\lambda p-$ summability of order α (for $\alpha \in(0,1])$ on an arbitrary time scale. Moreover, some relations about these notions are obtained. We define Δ_{λ}-statistical boundedness of order α (for $\alpha \in(0,1])$ on a time scale. Furthermore, we give connections between $S_{\mathbb{T}}^{(\lambda, \alpha)}(b), S_{\mathbb{T}}^{(\beta, \theta)}(b)$ and $S_{\mathbb{T}}(b)$ for various sequences $\mu_{\Delta_{\lambda(t)}}$ and $\mu_{\Delta_{\beta(t)}}$ which are determined in class Λ.

2010 Mathematics Subject Classification. 40A05, 46A45, 26E70.
Key words and phrases. Statistical convergence, statistical boundedness, sequence spaces, time scales.

1. Introduction

Zygmund [35] introduced the idea of statistical convergence in the first edition of his monograph published in Warsaw in 1935. Steinhaus [30] and Fast [13] and later Schoenberg [27] introduced the concept of statistical convergence, independently. Later this concept has been generalized in many directions. Fridy [14], Connor [8], Çolak [10], Maddox [20], Nuray [25], Rath and Tripathy [26], Šalát [31], Moricz [22], Miller [21] and others have studied different properties of space of statistically convergent sequences. Recently, the concept of statistical convergence has been applied to many fields of mathematics and statistics.

The statistical convergence depends on density of subsets of \mathbb{N}. The natural density of $K \subset \mathbb{N}$ is defined by

$$
\delta(K)=\lim _{n \rightarrow \infty} \frac{1}{n}|\{k \leq n: k \in K\}|,
$$

where $|\{k \leq n: k \in K\}|$ denotes the number of elements of K not exceeding n Niven and Zuckerman [24]. Any finite subset of \mathbb{N} have zero natural density and $\delta\left(K^{c}\right)=$ $1-\delta(K)$

We give some properties related to the concept of natural density as follows:
i) $0 \leq \frac{K(n)}{n} \leq 1$, so $0 \leq \delta(K) \leq 1$.
ii) If K is the set of all non- square positive integers, i.e

$$
K=\{2,3,5,6,7,8,10,11,12,13,14,15,17,18, \ldots\},
$$

then $K(n)=\frac{n-[|\sqrt{n}|]}{n}, \frac{K(n)}{n}=1-\frac{[|\sqrt{n}|]}{n}$. Obviously, $\delta(K)=1$. This shows that $\delta(K)=1$ does not imply that K contains all natural numbers.

[^0]A sequence $x=\left(x_{k}\right)$ of complex numbers is said to be statistically convergent to some number ℓ if, for every positive number $\varepsilon, \delta\left(\left\{k \in \mathbb{N}\right.\right.$: $\left.\left.\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right)$ has natural density zero. The number ℓ is called the statistical limit of $\left(x_{k}\right)$ and written as $S-\lim x_{k}=\ell$, Fridy [14]. We denote the space of all statistically convergent sequences by S.

Fridy and Orhan [15] introduced the idea of statistically bounded as follows:
A sequence $x=\left(x_{k}\right)$ of complex numbers is said to be statistically bounded if there exists some $M \geq 0$ such that

$$
\delta\left(\left|k \in \mathbb{N}:\left|x_{k}\right| \geq M\right|\right)=0
$$

We denote the linear space of all statistically bounded sequences by $S(b)$.
Gadjiev and Orhan [16], took the initiative to introduce the order of statistical convergence and after Çolak [9] continued this work and termed statistical convergence of order α (for $0<\alpha \leq 1$).

Leindler [19] defined the generalized de la Vallée-Poussin mean as follows:

$$
t_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} x_{k}
$$

where $\lambda=\left(\lambda_{n}\right)$ is a non-decreasing sequence of positive numbers such that $\lambda_{n+1} \leq$ $\lambda_{n}+1, \lambda_{1}=1, \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $I_{n}=\left[n-\lambda_{n}+1, n\right]$. Throughout this study Λ denotes the set of all such sequences. $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number ℓ if $t_{n}(x) \rightarrow \ell$ as $n \rightarrow \infty$. (V, λ)-summability reduces to $(C, 1)$ summability when $\lambda_{n}=n$ (see Leindler [19]). Later, the notions of λ-density and λ-statistical convergence were introduced by Mursaleen [23] as follows: Let $K \subset \mathbb{N}$, λ-density of K is defined by

$$
\delta_{\lambda}(K)=\lim _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left|\left\{n-\lambda_{n}+1 \leq k \leq n: k \in K\right\}\right| .
$$

$\delta_{\lambda}(K)$ reduces to the natural density $\delta(K)$ in case of $\lambda_{n}=n$ for all $n \in \mathbb{N}$ (see Mursaleen [23]). A sequence (x_{k}) is said to be λ-statistically convergent to a number ℓ if

$$
\lim _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left|\left\{k \in I_{n}:\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right|=0
$$

for each $\varepsilon>0$ where $I_{n}=\left[n-\lambda_{n}+1, n\right]$ (see Mursaleen [23]). Later, generalizing the concept of λ-statistical convergence, Çolak and Bektaş [11] introduced the concept of λ-statistical convergence of order α. Bhardwaj and Gupta [4] continued these works and defined statistically bounded of order α and λ - statistically bounded of order α (for $0<\alpha \leq 1$).

First we will give some information about the time scale.
Time scale calculus was introduced by Hilger in his doctoral dissertion in 1988 (see Hilger [18]). However, similar ideas have been used before and go back at least to the introduction of Riemann-Stieltijes integral which unifies sums and integrals. It gives an efficient tool to unify continuous and discrete problems in one theory. During the years many studies appeared in the time scales theory and its applications. One can see basic calculus of time scales in monographs of Bohner and Peterson [5]. For a time scale \mathbb{T}, forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ is defined by

$$
\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}
$$

And, the forward stepsize function $\mu: \mathbb{T} \rightarrow[0, \infty)$ is defined by $\mu(t)=\sigma(t)-t$, where $\inf \phi=\sup \mathbb{T}$ and ϕ is empty set. Let A denotes the family of all left closed and right open intervals of \mathbb{T} of the form $[a, b)_{\mathbb{T}}$. Measure theory on time scales was first constructed by Guseinov [17]. Then further studies were made by Cabada-Vivero [6]. Let $m: A \rightarrow[0, \infty)$ be a set function on A such that

$$
m\left([a, b)_{\mathbb{T}}\right)=b-a
$$

Then, it is known that m is a countably additive measure on A. Now, the Caratheodory extension of the set function m associated with family A is said to be the Lebesque Δ-measure on \mathbb{T} and is denoted by μ_{Δ}. In this case, it is known that If $a \in$ $\mathbb{T}-\{\max \mathbb{T}\}$, then the single point set $\{a\}$ is Δ-measurable and $\mu_{\Delta}(a)=\sigma(a)-a$. If $a, b \in \mathbb{T}$ and $a \leq b$, then $\mu_{\Delta}\left((a, b)_{\mathbb{T}}\right)=b-\sigma(a)$. If $a, b \in \mathbb{T}-\{\max \mathbb{T}\}, a \leq b$; $\mu_{\Delta}\left((a, b]_{\mathbb{T}}\right)=\sigma(b)-\sigma(a)$ and $\left.\mu_{\Delta}([a, b])_{\mathbb{T}}\right)=\sigma(b)-a($ see Deniz [12]).

Let \mathbb{T} be a time scale such that $\mathbb{T} \subset[0, \infty)$ and there exits a subset $\left\{t_{k}: k_{0} \in \mathbb{N}\right\} \subset \mathbb{T}$ with $0=t_{0}<t_{1}<t_{2} \ldots$ and $\lim _{k \rightarrow \infty} t_{k}=\infty$.

In the paper by Batit [3], the following space of continuous functions are defined:

$$
\begin{aligned}
\ell_{\infty}(\mathbb{T}) & =\left\{f / f: \mathbb{T} \rightarrow \mathbb{R}, \sup _{t \in \mathbb{T}}|f(t)|<\infty\right\} \\
c(\mathbb{T}) & =\left\{f / f: \mathbb{T} \rightarrow \mathbb{R}, \lim _{t \rightarrow \infty} f(t)<\infty\right\} \\
c_{0}(\mathbb{T}) & =\left\{f / f: \mathbb{T} \rightarrow \mathbb{R}, \lim _{t \rightarrow \infty} f(t)=0\right\}
\end{aligned}
$$

Now we will give some information about the application of time scale to statistical convergence. Seyyidoglu and Tan [28] gave some new notations such as Δ-convergence, Δ-Cauchy by using Δ-density and investigate their relations. Later, Turan and Duman [32] continued to work on this subject. Turan and Duman [33] applied the time scales to the concept of lacunary statistical convergence. Moreover, Cichon and Yantir [7] applied the time scales for some convergent sets.

First we will give an important definition for our study.
The notions of λ-density and λ-statistical convergence on time scales have been introduced by Yilmaz et al. [34].

Now let Ω be a Δ_{λ} - measurable subset of \mathbb{T} and $0<\alpha \leq 1$. Then, $\Omega(t, \lambda)$ is defined by

$$
\Omega(t, \lambda)=\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}: s \in \Omega\right\},
$$

for $t \in \mathbb{T}$. In this case, $(\lambda, \alpha)-$ density of Ω on \mathbb{T} is denoted by $\delta_{\mathbb{T}}^{(\lambda, \alpha)}(\Omega)$ and defined as follows:

$$
\begin{equation*}
\delta_{\mathbb{T}}^{(\lambda, \alpha)}(\Omega)=\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}(\Omega(t, \lambda))}{\mu_{\Delta_{\lambda}^{\alpha}}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}, \tag{1.1}
\end{equation*}
$$

provided that the above limit exists. If $\lambda_{t}=t$ and $\alpha=1$ in (1.1), we get classical density of Ω on \mathbb{T} which is denoted by $\delta_{\mathbb{T}}(\Omega)$ and given as follows

$$
\delta_{\mathbb{T}}(\Omega)=\lim _{t \rightarrow \infty} \frac{\mu_{\Delta}(\Omega(t))}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)}
$$

provided that the right side limit exists (see Seyyidoglu and Tan [28], Turan and Duman [32]).

2. Statistical Convergence

In this section, we introduce the notions Δ_{λ}-statistical convergence of order α (for $\alpha \in(0,1])$ and $\lambda p-$ summability of order α (for $\alpha \in(0,1])$ on an arbitrary time scale, using Δ_{λ}-statistical convergence (Yilmaz et al. [34] and Altin [2]) on the time scale. In addition, some relations about these notions are obtained.

Definition 2.1. Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a $\Delta_{\lambda}-$ measurable function and $\alpha \in(0,1]$ be any real number. Then f is λ-statistically convergent of order α on \mathbb{T} to a number ℓ if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=0 \tag{2.1}
\end{equation*}
$$

for each $\varepsilon>0$. In this case, we write $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty}(f(t))=\ell$. The set of all $\Delta_{\lambda}-$ statistically convergent of order α functions on \mathbb{T} is denoted by $s_{\mathbb{T}}^{(\lambda, \alpha)}$. Similarly, by setting $\lambda_{t}=t$ and $\alpha=1$ in (2.1), it turns to classical Δ-statistical convergence on \mathbb{T} as

$$
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta}\left(s \in\left[t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)}=0
$$

provided that the above limit exists (see Seyyidoglu and Tan [28], Turan and Duman [32]). The set of all Δ - statistically convergent functions on \mathbb{T} is denoted by $s_{\mathbb{T}}$.
Proposition 2.1. If $f, g: \mathbb{T} \rightarrow \mathbb{R}$ with $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty} f(t)=\ell_{1}$ and $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty} g(t)=$ $\ell_{2}, \Delta_{\lambda}-$ measurable function and the following statements hold:
i) $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty}(f(t)+g(t))=\ell_{1}+\ell_{2}$,
ii) $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty} f(t)=\ell$ and $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty}(c f(t))=c \ell(c \in \mathbb{R})$.

Theorem 2.2. Let $0<\alpha \leq 1, s_{\mathbb{T}} \subseteq s_{\mathbb{T}}^{(\lambda, \alpha)}$ if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)}>0 \tag{2.2}
\end{equation*}
$$

Proof. For given $\varepsilon>0$ we have

$$
\mu_{\Delta}\left(s \in\left[t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right) \supset \mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)
$$

Therefore,

$$
\begin{aligned}
& \frac{\mu_{\Delta}\left(s \in\left[t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)} \geq \frac{\mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)} \\
& =\frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)} \frac{1}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right) .
\end{aligned}
$$

Hence by using (2.2) and taking the limit as $t \rightarrow \infty$, we get $f(s) \rightarrow \ell\left(s_{\mathbb{T}}\right)$ implies $f(s) \rightarrow \ell\left(s_{\mathbb{T}}^{(\lambda, \alpha)}\right)$.

Definition 2.2. Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a Δ_{λ} - measurable function, $\lambda \in \Lambda, 0<\alpha \leq 1$ and $0<p<\infty$. We say that f is strongly λp - Cesàro summable of order α on \mathbb{T} if
there exists some $\ell \in \mathbb{R}$ such that

$$
\lim _{t \rightarrow \infty} \frac{1}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell|^{p} \Delta s=0
$$

In this case we write $[W, \lambda, p, \alpha]_{\mathbb{T}}-\lim f(s)=\ell$. The set of all strongly $\lambda p-$ summable functions of order α on \mathbb{T} will be denoted by $[W, \lambda, \alpha]_{\mathbb{T}}$.

Lemma 2.3. [See Yilmaz et al. [34]] Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a Δ_{λ} - measurable function and let

$$
\Omega(t, \lambda)=\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right\}
$$

for $\varepsilon>0$. In this case, we have

$$
\mu_{\Delta_{\lambda}}(\Omega(t, \lambda)) \leq \frac{1}{\varepsilon} \int_{\Omega(t, \lambda)}|f(s)-\ell| \Delta s \leq \frac{1}{\varepsilon} \int_{\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell| \Delta s
$$

Theorem 2.4. Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a Δ_{λ} - measurable function, $\lambda \in \Lambda, \ell \in \mathbb{R}, \alpha \in(0,1]$ and $0<p<\infty$. If f is strongly $\lambda p-$ summable of order α to ℓ, then $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-$ $\lim _{t \rightarrow \infty}(f(t))=\ell$.

Proof. Let f is strongly $\lambda p-$ summable of order α to ℓ. For given $\varepsilon>0$, let $\Omega(t, \lambda)=$ $\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right\}$. Then, it follows from Lemma 2.3 that

$$
\varepsilon^{p} \mu_{\Delta_{\lambda}}(\Omega(t, \lambda)) \leq \int_{\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell|^{p} \Delta s
$$

Dividing both sides of the last equality by $\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)$ and taking limit as $t \rightarrow \infty$, we obtain that
$\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}(\Omega(t, \lambda))}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \leq \frac{1}{\varepsilon^{p}} \lim _{t \rightarrow \infty} \frac{1}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell|^{p} \Delta s=0$, which yields that $s_{\mathbb{T}}^{(\lambda, \alpha)}-\lim _{t \rightarrow \infty}(f(t))=\ell$.

Theorem 2.5. Let $\mu_{\Delta_{\lambda(t)}}$ and $\mu_{\Delta_{\beta(t)}}$ be two sequences in Λ such that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and $0<\alpha \leq \theta \leq 1$.
i) If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}>0 \tag{2.5}
\end{equation*}
$$

then $\boldsymbol{s}_{\mathbb{T}}^{(\beta, \theta)} \subseteq \boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}$.
ii) If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1 \text { and } \lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\beta}}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1 \tag{2.6}
\end{equation*}
$$

then $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)} \subseteq \boldsymbol{s}_{\mathbb{T}}^{(\beta, \theta)}$.

Proof. i) Suppose that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and let (2.5) be satisfied. Then $I_{t} \subset J_{t}$ and so that for $\varepsilon>0$, we have

$$
\mu_{\Delta_{\beta}}\left(s \in\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right) \geq \mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)
$$

Therefore, we have

$$
\begin{aligned}
& \frac{\mu_{\Delta_{\beta}}\left(s \in\left[t-j_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \geq \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \frac{1}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad \times \mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)
\end{aligned}
$$

for all $t \in \mathbb{T}$,where $J_{t}=\left[t-\beta_{t}+t_{0}, t\right]$. Hence by using (2.5) and taking the limit as $t \rightarrow \infty$, we get $s_{\mathbb{T}}^{(\beta, \theta)} \subseteq s_{\mathbb{T}}^{(\lambda, \alpha)}$.
ii) Let f be a $\Delta_{\lambda}-$ measurable function and, $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim f(s)=\ell$ and (2.6) be satisfied. Since $I_{t} \subset J_{t}$ and all $t \in \mathbb{T}$, we can write

$$
\begin{aligned}
& \frac{\mu_{\Delta_{\beta}}\left(s \in\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
&= \frac{\mu_{\Delta_{\beta}}\left(t-\beta_{t}+t_{0} \leq s \leq t-\lambda_{t}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad+\frac{\mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \leq \frac{\mu_{\Delta_{\beta}}^{\theta}\left(s \in\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)-\mu_{\Delta_{\lambda}}^{\alpha}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad+\frac{\mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \leq\left(1-\frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}\right) \\
& \quad+\frac{\mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}
\end{aligned}
$$

for all $t \in \mathbb{T}$. Since

$$
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1 \text { and } \lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\beta}}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1
$$

by ii), the term in above inequality tends to 0 as $t \rightarrow \infty$. Furthermore, since $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-$ $\lim f(s)=\ell$, the second term of the right hand side of the above inequailty goes to 0 as $t \rightarrow \infty$.

$$
\frac{\mu_{\Delta_{\beta}}\left(t-\beta_{t}+t_{0} \leq s \leq t:|f(s)-\ell| \geq \varepsilon\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \rightarrow 0
$$

as $t \rightarrow \infty$. Therefore $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)} \subseteq \boldsymbol{s}_{\mathbb{T}}^{(\beta, \theta)}$.
From Theorem 2.5, we have the following result.
Corollary 2.6. Let $\mu_{\Delta_{\lambda(t)}}$ and $\mu_{\Delta_{\beta(t)}}$ be two sequences in Λ such that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and $0<\alpha \leq \theta \leq 1$. If (2.6) holds, then $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}=\boldsymbol{s}_{\mathbb{T}}^{(\beta, \theta)}$.

Theorem 2.7. Let $\mu_{\Delta_{\lambda(t)}}$ and $\mu_{\Delta_{\beta(t)}}$ be two sequences in Λ such that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and $0<\alpha \leq \theta \leq 1$. Then we get:
i) If (2.5) holds then $[W, \beta, \alpha]_{\mathbb{T}} \subseteq[W, \lambda, \theta]_{\mathbb{T}}$.
ii) If (2.6) holds then $\ell_{\infty}(\mathbb{T}) \cap[W, \lambda, \alpha]_{\mathbb{T}} \subseteq[W, \beta, \theta]_{\mathbb{T}}$.

Proof. i) Suppose that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$. Then $I_{t} \subset J_{t}$ for all $t \in \mathbb{T}$ so that we may write

$$
\left.\begin{array}{l}
\frac{1}{\mu_{\Delta_{\beta}^{\theta}}^{\theta}}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right) \\
\quad \geq \frac{1}{\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}} \\
\quad|f(s)-\ell| \Delta s \\
\mu_{\Delta_{\lambda}^{\alpha}}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right) \\
\int
\end{array} \int_{\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell| \Delta s\right)
$$

for all $t \in \mathbb{T}$. This gives that

$$
\begin{aligned}
& \frac{1}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell| \Delta s \\
& \quad \geq \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right.}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \frac{1}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell| \Delta s .
\end{aligned}
$$

Then taking limit $t \rightarrow \infty$ in the last inequality and using (2.5) we obtain $[W, \beta, \alpha]_{\mathbb{T}} \subseteq$ $[W, \lambda, \theta]_{\mathbb{T}}$.
ii) Let $f \in \ell_{\infty}(\mathbb{T}) \cap[W, \lambda, \alpha]_{\mathbb{T}}$ and suppose that (2.6) holds. Since $f \in \ell_{\infty}(\mathbb{T})$ then there exits some a positive number M such that $|f(s)| \leq M$ for all $s \in \mathbb{T}$ and also now, since $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ and so that $\frac{1}{\mu_{\Delta_{\beta(t)}}} \leq \frac{1}{\mu_{\Delta_{\lambda(t)}}}$ and $I_{t} \subset J_{t}$ for all $t \in \mathbb{T}$, we may write

$$
\begin{aligned}
& \frac{1}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}}|f(s)-\ell| \Delta s \\
& \leq \frac{1}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{J_{t} / I_{t}}|f(s)-\ell| \Delta s+\frac{1}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{I_{t}}|f(s)-\ell| \Delta s \\
& \leq\left(\frac{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)-\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}^{\theta}}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}\right) M \\
& \quad+\frac{1}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \int_{I_{t}}|f(s)-\ell| \Delta s
\end{aligned}
$$

for all $t \in \mathbb{T}$. Since $\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1$ by (2.6) the first term and since $f \in$ $[W, \lambda, \alpha]_{\mathbb{T}}$ the second term of right hand side of above inequality tend to 0 as $t \rightarrow \infty$. This implies that $\ell_{\infty}(\mathbb{T}) \cap[W, \lambda, \alpha]_{\mathbb{T}} \subseteq[W, \beta, \theta]_{\mathbb{T}}$ and so that $\ell_{\infty}(\mathbb{T}) \cap[W, \lambda, \alpha]_{\mathbb{T}} \subseteq$ $\ell_{\infty}(\mathbb{T}) \cap[W, \beta, \theta]_{\mathbb{T}}$.

From Theorem 2.7 we have the following result.

Corollary 2.8. Let $\mu_{\Delta_{\lambda(t)}}$ and $\mu_{\Delta_{\beta(t)}}$ be two sequences in Λ such that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and $0<\alpha \leq \theta \leq 1$. If (2.6) holds then $\ell_{\infty}(\mathbb{T}) \cap[W, \lambda, \alpha]_{\mathbb{T}}=\ell_{\infty}(\mathbb{T}) \cap$ $[W, \beta, \theta]_{\mathbb{T}}$.

3. Statistical boundedness

In this section, we use the concepts of statistical boundedness on time scales defined by Seyyidoğlu and Tan [29] and Δ_{λ}-statistical boundedness defined by Altin et al. [1], we define Δ_{λ}-statistical boundedness of order α (for $0<\alpha \leq 1$) on time scale. Furthermore, the connections between $S_{\mathbb{T}}^{(\lambda, \alpha)}(b), \boldsymbol{S}_{\mathbb{T}}^{(\beta, \theta)}(b)$ and $\boldsymbol{S}_{\mathbb{T}}(b)$ for various sequences are determined class Λ, according to in $\mu_{\Delta_{\lambda(t)}}$ and $\mu_{\Delta_{\beta(t)}}$.

Definition 3.1. Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a Δ_{λ}-measurable function and $\alpha \in(0,1] . f$ is Δ_{λ}-statistically bounded of order α on \mathbb{T} if there exists some $M>0$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda}}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right)}{\mu_{\Delta_{\lambda}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=0 \tag{3.1}
\end{equation*}
$$

for $t \in \mathbb{T}$. The set of all Δ_{λ}-statistically bounded functions of order α on \mathbb{T} is denoted by $S_{\mathbb{T}}^{(\lambda, \alpha)}(b)$. If $\alpha=1$ and $\lambda_{t}=t$, then we obtain $S_{\mathbb{T}}(b)$ which is the set of all Δ-statistically bounded functions [29].

Theorem 3.1. Let $\mu_{\Delta_{\lambda(t)}}$, $\mu_{\Delta_{\beta(t)}} \in \Lambda$ such that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and $0<\alpha \leq \theta \leq 1$.
i) If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf \frac{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}>0 \tag{3.2}
\end{equation*}
$$

then $\boldsymbol{S}_{\mathbb{T}}^{(\beta, \theta)}(b) \subset \boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b)$.
ii) If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1 \tag{3.3}
\end{equation*}
$$

then $\boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b) \subseteq \boldsymbol{S}_{\mathbb{T}}^{(\beta, \theta)}(b)$.
iii) If

$$
\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\beta(t)}}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1
$$

then $\boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b)=\boldsymbol{S}_{\mathbb{T}}^{(\beta, \theta)}(b)$.
Proof. i) Suppose that $\mu_{\Delta_{\lambda(t)}} \leq \mu_{\Delta_{\beta(t)}}$ for all $t \in \mathbb{T}$ and (3.3) is satisfied. Then, $I_{t} \subset J_{t}$ and so for $\varepsilon>0$, we have

$$
\begin{aligned}
\mu_{\Delta_{\beta(t)}}\left(\left\{s \in \left[t-\beta_{t}\right.\right.\right. & \left.\left.+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right) \\
& \geq \mu_{\Delta_{\lambda(t)}}\left(\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{\mu_{\Delta_{\beta(t)}}\left(\left\{s \in\left[t-j_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad \geq \frac{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right) \mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad \times \mu_{\Delta_{\lambda(t)}}\left(\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right),
\end{aligned}
$$

for $\forall t \in \mathbb{T}$ where $J_{t}=\left[t-\beta_{t}+t_{0}, t\right]$. Hence by using (3.3) and taking the limit as $t \rightarrow \infty$, we get $\boldsymbol{S}_{\mathbb{T}}^{(\beta, \theta)}(b) \subseteq \boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b)$.
ii) Let f be a $\Delta_{\lambda}-$ measurable and $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim f(s)=\ell$. Since $I_{t} \subset J_{t}$, we can write

$$
\begin{aligned}
& \frac{\mu_{\Delta_{\beta(t)}}\left(\left\{s \in\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad=\frac{\mu_{\Delta_{\beta(t)}}\left(\left\{t-\beta_{t}+t_{0} \leq s \leq t-\lambda_{t}:|f(s)| \geq M\right\}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad+\frac{\mu_{\Delta_{\lambda(t)}}\left(\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad \leq \frac{\mu_{\Delta_{\beta(t)}}^{\theta}\left(s \in\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)-\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \quad+\frac{\mu_{\Delta_{\lambda(t)}}\left(\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)} \\
& \leq\left(1-\frac{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}\right) \\
& \quad+\frac{\mu_{\Delta_{\lambda(t)}}\left(\left\{s \in\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}:|f(s)| \geq M\right\}\right)}{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}
\end{aligned}
$$

for all $t \in \mathbb{T}$. Since $\lim _{t \rightarrow \infty} \frac{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta_{\beta(t)}}^{\theta}\left(\left[t-\beta_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}=1$ by ii), the term in above inequality tends to 0 as $t \rightarrow \infty$. Furthermore, since $\boldsymbol{s}_{\mathbb{T}}^{(\lambda, \alpha)}-\lim f(s)=\ell$, the second term of the right hand side of the above inequality goes to 0 as $t \rightarrow \infty$. Therefore $\boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b) \subseteq$ $\boldsymbol{S}_{\mathbb{T}}^{(\beta, \theta)}(b)$.
iii) The proof is clear.

Theorem 3.2. Let $\mu_{\Delta_{\lambda(t)}} \in \Lambda$ for all $t \in \mathbb{T}$ and $0<\alpha \leq 1$.
i) If

$$
\lim _{t \rightarrow \infty} \inf \frac{\mu_{\Delta \lambda_{(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)}>0
$$

then $S_{\mathbb{T}}(b) \subset \boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b)$.
ii) If

$$
\lim _{n \rightarrow \infty} \frac{\mu_{\Delta_{\lambda(t)}}^{\alpha}\left(\left[t-\lambda_{t}+t_{0}, t\right]_{\mathbb{T}}\right)}{\mu_{\Delta}\left(\left[t_{0}, t\right]_{\mathbb{T}}\right)}=1,
$$

then $\boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b) \subset \boldsymbol{S}_{\mathbb{T}}(b)$ and hence $\boldsymbol{S}_{\mathbb{T}}^{(\lambda, \alpha)}(b)=\boldsymbol{S}_{\mathbb{T}}(b)$.
Proof. The proof is obvious.

References

[1] Y. Altin, B.N. Er, and E. Yilmaz, Δ_{λ}-statistical boundedness on time scales, Comm. Statist. Theory Methods 50 (3) (2021), no. 3, 738-746. DOI:10.1080/03610926.2019.1640880
[2] Y. Altin, Some results on λ-statistical convergence on time scales, Maejo Int. J. Sci. Technol. 11 (2017), no. 1, 90-96.
[3] O. Batit, Function spaces and their dual spaces on time scales, Int. J. Difference Equ. 2 (2007), no. 1, 13-23.
[4] V.K. Bhardwaj and S. Gupta, On some generalizations of statistical boundedness, J. Inequal. Appl. 2014 (2014), Article 12. DOI:10.1186/1029-242X-2014-12
[5] M. Bohner and M. Peterson, Dynamic equations on time scales, an introduction with applications, Birkhauser, Boston, 2001.
[6] A. Cabada and D.R. Vivero, Expression of the Lebesque Δ - integral on time scales as a usual Lebesque integral; application to the calculus of Δ-antiderivates, Math. Comput. Modelling 43 (2006), no. 1-2,194-207. DOI:10.1016/j.mcm.2005.09.028
[7] M. Cichon and A. Yantir, On the convergence of sets and the approximation property for dynamic equations on time scales, Mathematica Aeterna 5 (2015), no. 5, 883-904.
[8] J.S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), 47-63. DOI:10.1524/anly.1988.8.12.47
[9] R. Çolak, Statistical convergence order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi (2010), 121-129.
[10] R. Çolak, On λ-statistical convergence, Proceedings of Conference on Summability and Applications, 2011, İstanbul, Turkey, 4-5.
[11] R. Çolak and Ç.A. Bektaş, λ-statistical convergence of α, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 3, 953-959. DOI:10.1016/S0252-9602(11)60288-9
[12] A. Deniz, Measure theory on time scales, Master of Science, Izmir Institute of Technology, Izmir, Turkey, 2007.
[13] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[14] J. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. DOI:10.1524/anly.1985.5.4.301
[15] J.A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3625-3631. DOI:10.1090/S0002-9939-97-04000-8
[16] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138. DOI:10.1216/rmjm/1030539612
[17] G.Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), no. 1, 107-127. DOI:10.1016/S0022-247X(03)00361-5
[18] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. DOI:10.1007/BF03323153
[19] L. Leindler, Über die verallgemeinerte de la Vallée-Poussinsche Summierbarkeit allgemeiner Orthogonalreihen, (German) Acta Math. Acad. Sci. Hungar. 16 (1965), 375-387. DOI:10.1007/BF01904844
[20] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141-145. DOI:10.1017/S0305004100065312
[21] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1811-1819. DOI:10.1090/S0002-9947-1995-1260176-6
[22] F. Moricz, Statistical limits of measurable functions, Analysis 24 (2004), 207-219. DOI:10.1524/anly.2004.24.1.1
[23] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), no. 1, 111-115.
[24] I. Niven and H.S. Zuckerman, An introduction to the theory of numbers, John Wiley and Sons, Inc. New York, 1960.
[25] F. Nuray, λ-strongly summable and λ-statistically convergent functions, Iran. J. Sci. Technol. Trans. A Sci. 34 (2010), no. 4, 335-338.
[26] D. Rath and B.C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (1994), no. 4, 381-386.
[27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. DOI:10.2307/2308747
[28] M.S. Seyyidoglu and N.Ö. Tan, A note on statistical convergence on time scale, J. Inequal. Appl. 2012 (2012), Article 219. DOI:10.1186/1029-242X-2012-219
[29] M.S. Seyyidoglu and N.Ö. Tan, On a generalization of statistical cluster and limit points. Advances in Difference Equations 2015 (2015), Article 55. DOI:10.1186/s13662-015-0395-9
[30] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Math. 2 (1951), 73-74.
[31] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150.
[32] C. Turan and O. Duman, Statistical convergence on time scales and its characterizations, In: (Anastassiou, G., Duman, O. eds.) Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics \& Statistics 41 (2013), 57-71, Springer, New York, NY. DOI:10.1007/978-1-4614-6393-1_3
[33] C. Turan and O. Duman, Fundamental properties of statistical convergence and Lacunary statistical convergence on time scales, Filomat 31 (2017), no. 14, 4455-4467. DOI:10.2298/FIL1714455T
[34] E. Yilmaz, Y. Altin, and H. Koyunbakan, λ-Statistically Convergence on Time Scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 1, 23 69-78.
[35] A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge UK. 1979.
(Büşra Nur Er) Department of Mathematics, Firat University, 23119, Elaziğ, Turkey.
E-mail address: nurb37332@gmail.com
(Yavuz Altin) Department of Mathematics, Firat University, 23119, Elaziğ, Turkey.
E-mail address: yaltin23@yahoo.com

Δ-wavy probability distributions and Potts model

Udrea Păun

Abstract

We define the wavy probability distributions on a subset and Δ-wavy probability distributions - two generalizations of the wavy probability distributions. A classification on the Δ-waviness is given. For the Δ-wavy probability distributions having normalization constant, we give a formula for this constant, to compute this constant. We show that the Potts model is a Δ-wavy probability distribution, where Δ is a partition which will be specified. For the normalization constant of Potts model, we give formulas and bounds. As to the formulas for this constant, we give two general formulas, one of them is simple while the other is more complicated, and based on independent sets, a formula for the Potts model on connected separable graphs - closed-form expressions are then obtained in several cases -, and a formula for the Potts model on graphs with a vertex of degree 2 - a recurrence relation is then obtained for the normalization constant of Potts model on \mathcal{C}_{n}, the cycle graph with n vertices; the normalization constant of Ising model on \mathcal{C}_{n} is computed using this relation. As to the bounds for the normalization constant, we present two ways to obtain such bounds; we illustrate these ways giving a general lower bound, and a lower bound and an upper one when the model is the Potts model on $\mathcal{G}_{n, n}$, the square grid graph, $n=6 k, k \geq 1$ - two upper bounds for the free energy per site of this model are then obtained, one of them being in the limit. A sampling method for the Δ-wavy probability distributions is given and, as a result, a sampling method for the Potts is given. This method - that for the Potts model too has two steps, Step 1 and Step 2, when $|\Delta|>1$ and one step, Step 2 only, when $|\Delta|=1$. For the Potts model, Step 1 is, in general, difficult. As to Step 2, for the Potts model too, using the Gibbs sampler in a generalized sense, we obtain an exact (not approximate) sampling method having $p+1$ steps ($p+1$ substeps of Step 2), where $p=|I|, I$ is an independent set, better, a maximal independent set, best, a maximum independent set - for the Potts model on $\mathcal{G}_{n_{1}, n_{2}, \ldots, n_{d}}$, the d-dimensional grid graph, $d \geq 1, n_{1}, n_{2}, \ldots, n_{d} \geq 1, n_{1} n_{2} \ldots n_{d} \geq 2$, we obtain an exact sampling method for half or half +1 vertices.

2020 Mathematics Subject Classification. 60J10, 60J20, 82B20, 82B31, 82-10, 05C69, 05C90, 60E05, 62D05, 65C05.
Key words and phrases. Wavy probability distribution, wavy probability distribution on a subset, Δ-wavy probability distribution, normalization constant, Gibbs sampler in a generalilized sense, sampling, Ising model, Potts model, independent set, connected separable graph, graph with a vertex of degree 2, grid graph, bound.

1. Δ-wavy probability distributions

In this section, we present some basic things on nonnegative matrices, products of stochastic matrices, the hybrid Metropolis-Hastings chain(s), the Gibbs sampler(s) in a generalized sense, the wavy probability distributions, the wavy probability distributions on subsets, and the Δ-wavy probability distributions. The notions of wavy probability distribution on a subset and of Δ-wavy probability distribution together with the things concerning them are new - the most important things obtained are
for the Δ-wavy probability distributions: 1) a formula for the normalization constant for the Δ-wavy probability distributions which have normalization constant; 2) a sampling method. Moreover, two results, one on our hybrid Metropolis-Hastings chain and the other on our Gibbs sampler in a generalized sense, are improved and a classification on the Δ-waviness is given.

Set

$$
\operatorname{Par}(E)=\{\Delta \mid \Delta \text { is a partition of } E\}
$$

where E is a nonempty set. We shall agree that the partitions do not contain the empty set. ($E) \in \operatorname{Par}(E) ;(E)$ is the improper (degenerate) partition of E.
Definition 1.1. Let $\Delta_{1}, \Delta_{2} \in \operatorname{Par}(E)$. We say that Δ_{1} is finer than Δ_{2} if $\forall V \in \Delta_{1}$, $\exists W \in \Delta_{2}$ such that $V \subseteq W$.

Write $\Delta_{1} \preceq \Delta_{2}$ when Δ_{1} is finer than Δ_{2}.
In this article, a vector is a row vector and a stochastic matrix is a row stochastic matrix.

The entry (i, j) of a matrix Z will be denoted $Z_{i j}$ or, if confusion can arise, $Z_{i \rightarrow j}$.
Set

$$
\begin{gathered}
\langle m\rangle=\{1,2, \ldots, m\}(m \in \mathbb{N}, m \geq 1), \\
\langle\langle m\rangle\rangle=\{0,1, \ldots, m\}(m \in \mathbb{N}) \\
N_{m, n}=\{P \mid P \text { is a nonnegative } m \times n \text { matrix }\}, \\
S_{m, n}=\{P \mid P \text { is a stochastic } m \times n \text { matrix }\} \\
N_{n}=N_{n, n} \\
S_{n}=S_{n, n}
\end{gathered}
$$

Let $P=\left(P_{i j}\right) \in N_{m, n}$. Let $\emptyset \neq U \subseteq\langle m\rangle$ and $\emptyset \neq V \subseteq\langle n\rangle$. Set the matrices

$$
P_{U}=\left(P_{i j}\right)_{i \in U, j \in\langle n\rangle}, P^{V}=\left(P_{i j}\right)_{i \in\langle m\rangle, j \in V}, \text { and } P_{U}^{V}=\left(P_{i j}\right)_{i \in U, j \in V}
$$

Set

$$
\begin{gathered}
(\{i\})_{i \in\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}}=\left(\left\{s_{1}\right\},\left\{s_{2}\right\}, \ldots,\left\{s_{t}\right\}\right) \\
(\{i\})_{i \in\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}} \in \operatorname{Par}\left(\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}\right)(t \geq 1)
\end{gathered}
$$

E.g.,

$$
(\{i\})_{i \in\langle\langle n\rangle\rangle}=(\{0\},\{1\}, \ldots,\{n\})
$$

Definition 1.2. Let $P \in N_{m, n}$. We say that P is a generalized stochastic matrix if $\exists a \geq 0, \exists Q \in S_{m, n}$ such that $P=a Q$.
Definition 1.3. ([13].) Let $P \in N_{m, n}$. Let $\Delta \in \operatorname{Par}(\langle m\rangle)$ and $\Sigma \in \operatorname{Par}(\langle n\rangle)$. We say that P is a $[\Delta]$-stable matrix on Σ if P_{K}^{L} is a generalized stochastic matrix, $\forall K \in \Delta, \forall L \in \Sigma$. In particular, a $[\Delta]$-stable matrix on $(\{i\})_{i \in\langle n\rangle}$ is called $[\Delta]$-stable for short.

Definition 1.4. ([13].) Let $P \in N_{m, n}$. Let $\Delta \in \operatorname{Par}(\langle m\rangle)$ and $\Sigma \in \operatorname{Par}(\langle n\rangle)$. We say that P is a Δ-stable matrix on Σ if Δ is the least fine partition for which P is a [Δ]stable matrix on Σ. In particular, a Δ-stable matrix on $(\{i\})_{i \in\langle n\rangle}$ is called Δ-stable while a $(\langle m\rangle)$-stable matrix on Σ is called stable on Σ for short. A stable matrix on $(\{i\})_{i \in\langle n\rangle}$ is called stable for short.

Let $\Delta_{1} \in \operatorname{Par}(\langle m\rangle)$ and $\Delta_{2} \in \operatorname{Par}(\langle n\rangle)$. Set (see [13] for $G_{\Delta_{1}, \Delta_{2}}$ and [14] for $\bar{G}_{\Delta_{1}, \Delta_{2}}$) $G_{\Delta_{1}, \Delta_{2}}=\left\{P \mid P \in S_{m, n}\right.$ and P is a $\left[\Delta_{1}\right]$-stable matrix on $\left.\Delta_{2}\right\}$
and

$$
\bar{G}_{\Delta_{1}, \Delta_{2}}=\left\{P \mid P \in N_{m, n} \text { and } P \text { is a }\left[\Delta_{1}\right] \text {-stable matrix on } \Delta_{2}\right\}
$$

When we study or even when we construct products of nonnegative matrices (in particular, products of stochastic matrices) using $G_{\Delta_{1}, \Delta_{2}}$ or $\bar{G}_{\Delta_{1}, \Delta_{2}}$, we shall refer this as the G method. G comes from the verb to group and its derivatives.

Below we give an important result - a beautiful result - on products of stochastic matrices.

Theorem 1.1. ([13].) Let $P_{1} \in G_{\left(\left\langle m_{1}\right\rangle\right), \Delta_{2}} \subseteq S_{m_{1}, m_{2}}, P_{2} \in G_{\Delta_{2}, \Delta_{3}} \subseteq S_{m_{2}, m_{3}}, \ldots$, $P_{n-1} \in G_{\Delta_{n-1}, \Delta_{n}} \subseteq S_{m_{n-1}, m_{n}}, P_{n} \in G_{\Delta_{n},(\{i\})_{i \in\left\langle m_{n+1}\right\rangle}} \subseteq S_{m_{n}, m_{n+1}}$. Then

$$
P_{1} P_{2} \ldots P_{n}
$$

is a stable matrix (i.e., a matrix with identical rows, see Definition 1.4).
Proof. See [13].
Definition 1.5. (See, e.g., [21, p. 80].) Let $P \in N_{m, n}$. We say that P is a rowallowable matrix if it has at least one positive entry in each row.

Let $P \in N_{m, n}$. Set

$$
\bar{P}=\left(\bar{P}_{i j}\right) \in N_{m, n}, \bar{P}_{i j}=\left\{\begin{array}{l}
1 \text { if } P_{i j}>0, \\
0 \text { if } P_{i j}=0
\end{array}\right.
$$

$\forall i \in\langle m\rangle, \forall j \in\langle n\rangle$. We call \bar{P} the incidence matrix of P (see, e.g., [8, p. 222]).
In this article, the transpose of a vector x is denoted x^{\prime}. Set $e=e(n)=$ $(1,1, \ldots, 1) \in \mathbb{R}^{n}, \forall n \geq 1$.

In this article, some statements on the matrices hold eventually by permutation of rows and columns. For simplification, further, we omit to specify this fact.

Warning! In this article, if a Markov chain has the transition matrix $P=P_{1} P_{2} \ldots P_{s}$, where $s \geq 1$ and $P_{1}, P_{2}, \ldots, P_{s}$ are stochastic matrices, then any 1-step transition of this chain is performed via $P_{1}, P_{2}, \ldots, P_{s}$, i.e., doing s transitions: one using P_{1}, one using P_{2}, \ldots, one using P_{s}.

Let S be a finite set with $|S|=r$, where $r \geq 2(|\cdot|$ is the cardinal; for " $r \geq 2$ ", see below). Let $\pi=\left(\pi_{i}\right)_{i \in S}$ be a positive probability distribution on S. One way to sample approximately or, at best, exactly from S is by means of our hybrid MetropolisHastings chain from [14]. Below we define this chain.

Let E be a nonempty set. Set $\Delta \succ \Delta^{\prime}$ if $\Delta^{\prime} \preceq \Delta$ and $\Delta^{\prime} \neq \Delta$, where Δ, $\Delta^{\prime} \in \operatorname{Par}(E)$.

Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{t+1} \in \operatorname{Par}(S)$ with $\Delta_{1}=(S) \succ \Delta_{2} \succ \ldots \succ \Delta_{t+1}=(\{i\})_{i \in S}$, where $t \geq 1$. $\left(\Delta_{1} \succ \Delta_{2}\right.$ implies $r \geq 2$.) Let $Q_{1}, Q_{2}, \ldots, Q_{t} \in S_{r}, Q_{1}=\left(\left(Q_{1}\right)_{i j}\right)_{i, j \in S}$, $Q_{2}=\left(\left(Q_{2}\right)_{i j}\right)_{i, j \in S}, \ldots, Q_{t}=\left(\left(Q_{t}\right)_{i j}\right)_{i, j \in S}$, such that
(C1) $\bar{Q}_{1}, \bar{Q}_{2}, \ldots, \bar{Q}_{t}$ are symmetric matrices;
(C2) $\left(Q_{l}\right)_{K}^{L}=0, \forall l \in\langle t\rangle-\{1\}, \forall K, L \in \Delta_{l}, K \neq L$ (this condition implies that Q_{l} is a block diagonal matrix and Δ_{l}-stable matrix on $\left.\Delta_{l}, \forall l \in\langle t\rangle-\{1\}\right)$;
(C3) $\left(Q_{l}\right)_{K}^{U}$ is a row-allowable matrix, $\forall l \in\langle t\rangle, \forall K \in \Delta_{l}, \forall U \in \Delta_{l+1}, U \subseteq K$.

[^0]: Received November 12, 2019. Accepted August 9, 2022.

