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Giovanni Molica Bisci, Università degli Studi Mediterranea di Reggio Calabria, Italy

Sorin Micu, University of Craiova, Romania
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Quasi-invariant convergence in a normed space

Fatih Nuray

Abstract. In this study, notions of quasi-invariant convergence and quasi-invariant statistical
convergence, which are related to invariant limits, are defined and discussed.
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1. Introduction

Let σ be a one-to-one mapping of the set of positive integer into itself such that
σm(n) �= n for all positive integers m and n, where σm(n) = σ(σm−1(n)); m =
1, 2, 3, ....

Let X be a real normed space. A continuous linear functional ϕ on the space of
bounded sequences is an invariant mean or σ-limit if
(1) ϕ(x) ≥ 0 when the sequence x = (xn) ∈ X has xn ≥ 0 for all n,
(2) ϕ(1, 1, 1, ...) = 1 and
(3) ϕ(xσ(n)) = ϕ(x)
for all bounded sequences x. We denote by Vσ the set of bounded sequences all of
whose invariant means are equal. In case σ(n) = n + 1, a σ-limit is often called a
Banach limit and Vσ is the set of almost convergent sequences. It is known that a
bounded sequence x = (xn) ∈ X is invariant convergent to s ∈ X if and only if

lim
p→∞ ‖1

p

p−1∑
i=0

xσi(k) − s‖ = 0 (1)

uniformly in k(= 1, 2, 3, ...). It is known that c ⊂ Vσ ⊂ l∞ where c is the space of all
convergent sequences and l∞ is the space of all bounded sequences in a real normed
space X. Over the years invariant convergence has been examined in summability
theory.

A sequence (xi) ∈ X is said to be statistically convergent to s ∈ X if for each ε > 0

lim
p→∞

1

p
|{i ≤ p : ‖xi − s‖ ≥ ε}| = 0

where |A| denotes the number of members of a set A. The concept of statistical
convergence was first introduced by Fast [2] and also independently by Buck [1] and
Schoenberg [8] for real and complex sequences. Further this concept was studied by
Salat [6], Fridy [3] and many others. Recently Savas and Nuray [5] introduced σ-
statistical convergence for real and complex sequences as follows: A sequence (xi) is
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2 F. NURAY

said to be invariant or σ- statistically convergent to real or complex number s if for
each ε > 0

lim
p→∞

1

p
|{i ≤ p : |xσi(k) − s| ≥ ε}| = 0

uniformly in k. We can generalize this definition to the sequences in a real normed
space X as follows: A sequence (xi) ∈ X is said to be invariant or σ- statistically
convergent to s ∈ X if for each ε > 0

lim
p→∞

1

p
|{i ≤ p : ‖xσi(k) − s‖ ≥ ε}| = 0

uniformly in k.
The plan of this paper is as follows. First we will show the existence of an an-

other family of functionals defined on the space l∞. Then we define a new method of
summability of sequences (xi) ∈ l∞ which will be called quasi invariant convergence
and we will give a theorem which contains a necessary and sufficient condition for a
bounded sequence to be quasi invariant convergent. Next, we shall prove a theorem
which shows that if a bounded sequence is invariant convergent to s, then it is quasi
invariant convergent to s. Finally we will introduce quasi invariant statistical conver-
gence for sequences in a real normed space and show that if a sequence is invariant
statistical convergent to s, then it is quasi invariant statistical convergent to s.

2. Quasi-invariant convergence

Let us define on the space l∞ the function q by

q(x) ≡ q(xi) = lim
p→∞{supn 1

p
‖
p−1∑
i=0

xσi(np)‖} (2)

The functional q clearly is real-valued and it satisfies following properties:
(i) q(x) ≥ 0,
(ii) q(αx) = |α|q(x),
(iii) q(x+ y) ≤ q(x) + q(y) (α ∈ R;x, y ∈ l∞)
that is, q is a symmetric convex functional on the space l∞. According to a corollary
of Hahn-Banach theorem there must exist a nontrivial linear functional L on the space
l∞ such that |L(xi)| ≤ q(xi).

The following lemma is well known in the literature.

Lemma 2.1. Let X be a real linear space and q : X → R be a functional such that
the following assertions are valid: q(x) ≥ 0, q(αx) = |α|q(x), q(x + y) ≤ q(x) + q(y)
(α ∈ R;x, y ∈ l∞). Then for each x0 ∈ X, there exists a linear functional L on X
such that

(∀x ∈ X) |L(x)| ≤ q(x), L(x0) = q(x0).

Denoting now by
∑

the family of functionals satisfying the above conditions then
for each s ∈ X we have

(∀L ∈
∑

) L(xi − s) = 0 iff q(xi − s) = 0 ((xi) ∈ l∞). (3)

Now we can state following theorem.

Theorem 2.2. There exists the family of non trivial functionals L defined on the
space l∞ such that for all α, β ∈ R, each s ∈ X and all (xi), (yi) ∈ l∞, the following
assertions are valid:
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(a) L(αxi + βyi) = αL(xi) + βL(yi),

(b) L(xσ(i)) = L(xi),

(c) |L(xi)| ≤ q(xi),

(d) L(xi − s) = 0 iff q(xi − s) = 0.

Having obtained the functionals L ∈∑ we can proceed to the investigation of the
sequences (xi) ∈ l∞ which all the functionals L ∈∑ assigned the same value.

Definition 2.1. A sequence (xi) ∈ l∞ is quasi invariant convergent to s ∈ X or
quasi σ-summable to s if

(∀L ∈
∑

) L(xi − s) = 0. (4)

in this case we will write (Q− σ)− limi→∞xi = s.

It is easy to see that quasi invariant limit of a sequence defined in such way is
unique.

Theorem 2.3. A bounded sequence (xi) quasi invariant convergent to s ∈ X iff

‖1
p

p−1∑
i=0

xσi(np) − s‖ → 0 as p → +∞ (5)

uniformly in n (= 1, 2, ...).

Proof. Suppose for a bounded sequence (xi), we have (Q−σ)− limi→∞xi = s. Then,
by (4) and (3), we have q(xi − s) = 0 or, by (2), we have

limp→∞{supn 1
p
‖
p−1∑
i=0

xσi(np) − s‖} = 0.

Therefore for any ε > 0, there exists an integer p0 > 0 such that for all p > p0 and
n = 1, 2, 3, ..., we have

1

p
‖
p−1∑
i=0

xσi(np) − s‖ < ε

Since ε > 0, arbitrary, we have

1

p
‖
p−1∑
i=0

xσi(np) − s‖ → 0 as p → ∞

uniformly in n, so the condition (5) is necessary. Conversely, let the condition (5) be
true. This means that

supn
1

p
‖
p−1∑
i=0

xσi(np) − s‖ → 0 as p → ∞

or

q(xi − s) = limp→∞{supn 1
p
‖
p−1∑
i=0

xσi(np) − s‖} = 0

hence by (3), we have

(∀L ∈
∑

) L(xi − s) = 0,

which by (4), means that (Q−σ)−limi→∞xi = s, so the condition (5) is sufficient. �
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Theorem 2.4. If a bounded sequence x = (xi) invariant convergent to s ∈ X, then
it is quasi invariant convergent to s.

Proof. Let bounded sequence x = (xi) be invariant convergent to s ∈ X. Then by
(1) for any ε > 0 there exists an integer p0 > 0 such that

‖1
p

p−1∑
i=0

xσi(k) − s‖ < ε (p > p0, k = 1, 2, 3, ...).

hence for k = np (p > p0, n = 1, 2, 3, ...) we have

‖1
p

p−1∑
i=0

xσi(np) − s‖ < ε.

Since ε > 0 is arbitrary, we have

‖1
p

p−1∑
i=0

xσi(np) − s‖ → 0 as p → ∞

uniformly in n which, by (5), means that (xi) quasi invariant convergent. �

When σ(i) = i + 1 we have quasi almost convergence which was defined and
discussed in [4].

3. Quasi-invariant statistical convergence

Definition 3.1. A sequence (xi) is said to be quasi invariant statistically convergent
to s ∈ X if for each ε > 0

lim
p→∞

1

p
|{i ≤ p : ‖xσi(np) − s‖ ≥ ε}| = 0

uniformly in n.

When σ(i) = i + 1 we have the following definition of quasi almost statistical
convergence which have not appeared anywhere by this time.

Definition 3.2. A sequence (xi) is said to be quasi almost statistically convergent to
s ∈ X if for each ε > 0

lim
p→∞

1

p
|{i ≤ p : ‖xnp+i − s‖ ≥ ε}| = 0

uniformly in n.

Theorem 3.1. If a sequence x = (xi) ∈ X invariant statistically convergent to s ∈ X,
then it is quasi invariant statistically convergent to s.

Proof. Let x = (xi) be invariant statistically convergent to s ∈ X. Then for any ε > 0
there exists an integer p0 > 0 such that

1

p
|{i ≤ p : ‖xσi(k) − s‖ ≥ ε}| < ε (p > p0, k = 1, 2, ...).

Hence for k = np (p > p0, n = 1, 2, ...) we have

1

p
|{i ≤ p : ‖xσi(np) − s‖ ≥ ε}| < ε.
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Since ε > 0 is arbitrary, we have

lim
p→∞

1

p
|{i ≤ p : ‖xσi(np) − s‖ ≥ ε}| = 0

uniformly in n which means that (xi) is quasi invariant statistically convergent to s
convergent. �

We remark that from the comparison of the definitions of invariant statistical
convergence and quasi invariant statistical convergence, follows that there is a big
possibility that there exist sequences that are quasi invariant statistical convergent,
but not invariant statistically convergent. Proof of that is still an open problem. The
similar remark also stands for relationship between the quasi invariant convergence
and invariant convergence.
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Some further results on belonging of trigonometric series to
Orlicz space

Xhevat Z. Krasniqi

Abstract. Here in this paper we have introduced a new condition which is not worse than the
condition that satisfy numerical sequences of Rest Bounded Variation Mean Sequences. This

condition is used to obtain some integrability conditions of the functions g(x) and f(x) (which
denote formal sine and cosine trigonometric series respectively) such that these functions are
going to belong to the Orlicz space. This study may be considered as a continuation of the

investigations previously done by L. Leindler [5] and S. Tikhonov [14].
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1. Introduction

Many authors have studied the integrability of the formal series

g(x) :=
∞∑

n=1

λn sinnx (1)

and

f(x) :=

∞∑
n=1

λn cosnx (2)

imposing certain conditions on the coefficients λn (see for example [2], [3], [8], [9], and
[11]–[13]).

As initial example, R. P. Boas in [1] proved the following result for (1):

Theorem 1.1. If λn ↓ 0 then for 0 ≤ γ ≤ 1, x−γg(x) ∈ L[0, π] if and only if∑∞
n=1 n

γ−1λn converges.

This result had previously been proved for γ = 0 by W.H. Young [15] and it was
later extended by P. Heywood [4] for 1 < γ < 2.

Later on the monotonicity condition on the coefficients λn was replaced to more
general ones by S.M. Shah [12] and L. Leindler [7].

Recently, S. Tikhonov [14] has proved two theorems giving sufficient conditions of
belonging of g(x) and f(x) to Orlicz space. Before we state his theorems we shall
recall some notions and notations.

L. Leindler [7] introduced a class of numerical sequences which has an interesting
property and useful in many applications. A sequence c := {cn} of positive numbers

Received May 15, 2013.
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tending to zero is of rest bounded variation, or briefly R+
0 BV S, if it possesses the

property
∞∑

n=m

|cn − cn+1| ≤ K(c)cm (3)

for all natural numbers m, where K(c) is a constant depending only on c.
A sequence γ := {γn} of positive terms will be called almost increasing (decreasing)

if there exists constant C := C(γ) ≥ 1 such that

Cγn ≥ γm (γn ≤ Cγm)

holds for any n ≥ m.
Here and further C,Ci denote positive constants that are not necessarily the same

at each occurrence, and also we use the notion u � w (u � w) at inequalities if there
exists a positive constant C such that u ≤ Cw (u ≥ Cw) holds.

We will denote (see [10]) by �(p, q), (0 ≤ q ≤ p) the set of all nonnegative functions
Φ(x) defined on [0, 1) such that Φ(0) = 0 and Φ(x)/xp is nonincreasing and Φ(x)/xq

is nondecreasing. It is clear that �(p, q) ⊂ �(p, 0), (0 < q ≤ p). As an example,
�(p, 0) contains the function Φ(x) = log(1 + x).

Here and in the sequel, a function γ(x) is defined by the sequence γ in the following
way: γ

(
π
n

)
:= γn, n ∈ N and there exist positive constants C1 and C2 such that

C1γn+1 ≤ γ(x) ≤ C2γn for x ∈
(

π
n+1 ,

π
n

)
.

A locally integrable almost everywhere positive function γ(x) : [0, π] → [0,∞) is
said to be a weight function. Let Φ(t) be a nondecreasing continuous function defined
on [0,∞) such that Φ(0) = 0 and limt→∞ Φ(t) = +∞. For a weight γ(x) the weighted
Orlicz space L(Φ, γ) is defined by

L(Φ, γ) =

{
h :

∫ π

0

γ(x)Φ(ε|h(x)|)dx < ∞ for some ε > 0

}
. (4)

Tikhonov’s results now can be read as follows:

Theorem 1.2. Let Φ(x) ∈ �(p, 0), 0 ≤ p. If λn ∈ R+
0 BV S, and the sequence {γn}

is such that {γnn−1+ε} is almost decreasing for some ε > 0, then
∞∑

n=1

γn
n2

Φ(nλn) < ∞ ⇒ ψ(x) ∈ L(Φ, γ), (5)

where a function ψ(x) is either a sine or cosine series.

Theorem 1.3. Let Φ(x) ∈ �(p, q), 0 ≤ q ≤ p. If λn ∈ R+
0 BV S, and the sequence

{γn} is such that {γnn−(1+q)+ε} is almost decreasing for some ε > 0, then
∞∑

n=1

γn
n2+q

Φ(n2λn) < ∞ ⇒ g(x) ∈ L(Φ, γ). (6)

A null-sequence c of nonnegative numbers possessing the property

∞∑
n=2m

|cn − cn+1| ≤ K(c)

m

2m−1∑
ν=m

cν (7)

is called a sequence of mean rest bounded variation, in symbols, c ∈ MRBV S.
In [5] L. Leindler extended Theorem 1.2 and Theorem 1.3 so that the sequence {λn}

belongs the class MRBV S instead of the class R+
0 BV S. His results are formulated

as follows:



8 XH. Z. KRASNIQI

Theorem 1.4. Theorems 1.2 and 1.3 can be improved when the condition λn ∈
R+

0 BV S is replaced by the assumption λn ∈ MRBV S. Furthermore the conditions
of (5) and (6) may be modified as follows:

∞∑
n=1

γn
n2

Φ

(
2n−1∑
ν=n

λν

)
< ∞ ⇒ ψ(x) ∈ L(Φ, γ), (8)

and
∞∑

n=1

γn
n2+q

Φ

(
n

2n−1∑
ν=n

λν

)
< ∞ ⇒ g(x) ∈ L(Φ, γ), (9)

respectively.

Let C := Cn := 1
n+1

∑n
i=0 ck, where ck is a sequence of nonnegative numbers. Very

recently, R. N. Mohapatra and B. Szal [16] introduced the following class of sequences
of nonnegative numbers:

If C ∈ RBV S, i.e.
∞∑

k=m

|Ck − Ck+1| ≤ K(c)Cm, (10)

then it is said that C is of rest bounded variation means sequence, briefly denoted by
C ∈ RBVMS.

Aiming to prove the counterparts of Theorem 1.2 and Theorem 1.3 so that the
sequence {λn} belongs the class RBVMS instead of the classes MRBV S or R+

0 BV S,
we were not in able. However, we have proved two theorems, when not a worse
condition than (10) will be fulfilled. Indeed, we have required that the sequence {λn}
satisfies condition (obviously not worse than condition (10))

∞∑
k=n

k|Vk − Vk+1| ≤ KVn, (n = 1, 2, . . . ), (11)

where Vk := 1
k

∑k
j=1 λj .

To prove our main results we need some helpful statements given in next section.

2. Auxiliary lemmas

We shall use the following lemmas for the proof of the main results.

Lemma 2.1 ([6]). If an ≥ 0, bn > 0, and if p ≥ 1, then

∞∑
n=1

bn

(
n∑

v=1

av

)p

≤ C
∞∑

n=1

b1−p
n apn

( ∞∑
v=n

av

)p

.

Lemma 2.2 ([10]). Let Φ ∈ �(p, q), 0 ≤ q ≤ p, and tj ≥ 0, j = 1, 2, . . . , n, n ∈ N.
Then
(1) θpΦ(t) ≤ Φ(θt) ≤ θqΦ(t), 0 ≤ θ ≤ 1, t ≥ 0,

(2) Φ
(∑n

j=1 tj

)
≤
(∑n

j=1 Φ
1/p∗(tj)

)p∗
, p∗ := max(1, p).

Lemma 2.3. Let Φ ∈ �(p, q), 0 ≤ q ≤ p. If ρn > 0, λn ≥ 0, and if

Vν+j � Vν , Vν :=
1

ν

ν∑
j=1

λj (12)


