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Wireless Transfer of Electric Power - 

a Disruptive Technology 
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Abstract—Wireless (contactless) transfer of electric power 

is a disruptive technology because it abandons wired 

transmission technology, the only technology used in electrical 

and electronic engineering until recently, just like in the past 

animal traction and film photography were replaced by 

mechanical traction and digital photography. Although 

revealed at the end of the nineteenth century through Tesla’s 

inventions, it could be applied in practice only in the ‘80s of the 

twentieth century, with the development of power electronics 

and microprocessors. After an introduction and an overview of 

the operating principles, the paper presents the readiness level 

reached by this technology, the stage of standardization, 

Romanian achievements and future prospects for high power 

applications. 

Cuvinte cheie—transmiterea puterii fără contact, tehnologie 

diruptivă, nivel tehnologic,expunere umană la câmp magnetic, 

aplicații 

Keywords—wireless power transfer, disruptive technology, 

readiness level, magnetic field human exposure, applications 

I. INTRODUCTION 

A disruptive technology, as defined by CM Christensen 
[1] is a technological innovation, a product or service, 
fundamentally different from the dominant technology on the 
market. One of the characteristics of disruptive technologies 
is that they coexist with existing technologies and are 
initially considered inferior by most consumers [2,3].  

This category has included over time: the replacement of 
animal traction by mechanical traction and then by electrical 
traction, vacuum tubes replaced by transistors and then by 
integrated circuits, incandescent filament light bulbs replaced 
by the LEDs, HDDs by SSDs, 2D printers by 3D, 4D etc. 

A similar paradigm shift in which the traditional 
transmission of electricity by conduction is replaced by the 
contactless transmission is a typical disruptive technology 
[4]. It is best known as Wireless Power Transfer (WPT) and 
has many important advantages in modern technology due to 
the absence of contacts and their wear, ease of use in 
aggressive or explosive environments, in air or water, with 
applications for both electric drives and for charging storage 
batteries in the most various fields such as: medicine, 
robotics, electric mobility, etc. The transfer of energy is 
carried out in the near field (magnetic or electric) on small 
and medium distances, with efficiency comparable to the 
transmission by galvanic  contact and with the possibility of 
simultaneous transmission of power and data. Due to the 
different operating principle, both the theoretical bases and 
the simulation of circuits and fields through numerical 
methods are essential to the design and practical achievement 
of these systems in order to ensure interoperability, and 

increase the efficiency and the transferred power [5]. In [6] it 
is stated that: “Wireless Power Transfer is now recognized as 
one of the ‘Hottest’ Research Areas in Electrical 
Engineering combining the EE Foundation Studies of 
Electricity and Magnetism with Power Electronics and 
Microprocessor Control”. This statement best summarizes 
the special endeavors in the field. The research into the IEEE 
Xplore database shows that in the field of inductive WPT 
alone during the period 2010-2020 [7] more than 1800 
papers were published with an annual increase rate of 100%, 
plus over 6000 patents registered since Tesla patents until 
today, as evidenced by a search in the USPTO (U.S. Patent 
and Trademark Office) [8]. The papers on WPT listed above 
are featured not only in journals and conferences dedicated to 
power electronics applications but also in publications in 
related fields such as medicine, electromagnetic 
compatibility, etc. These figures are exceeded in number 
only by publications in the field of microelectronics. The 
IEEE Xplore database contains 32 papers in the field of 
Romanian authors, published after 2012 [7]. When the 
necessary high powers are transmitted, for example, to 
charge the batteries of an electric vehicle (EV) in static or 
dynamic charging systems, the limitation of human exposure 
to the stray magnetic field [9] requires electromagnetic 
shielding measures [10]. The autonomous driving systems of 
EVs on highways and in urban areas currently represent an 
important argument for the application of the contactless 
transfer of electric power. The paper analyzes the principles 
of designing inductive power couplers, the technological 
readiness level of these systems in contrast to plug-in 
charging, the evaluation and optimization of their 
parameters, the standards and regulations in force, the 
Romanian achievements for EVs and prospects for 
application in the near future. 

II. CONSTRUCTION OF INDUCTIVE POWER TRANSFER

SYSTEMS 

A. Realization and evaluation of power transfer through an 

inductive coupler 

The inductive coupler is an essential element of a WPT 
system. The simplest inductive coupler is shown in Fig. 1. It 
is in fact a two-port circuit with an input port and an output 
port usually consisting of two air core planar (circular or 
solenoidal) coils, loosely coupled, with self-inductances L1 
and L2 and R1 and R2 with their AC value at operating 
frequency,. The primary coil is the transmitter (Tx) and the 
secondary coil is the receiver (Rx). Their position in the xyz 
coordinate system can be random, in the most general case; 
therefore the variable mutual inductance M largely 
determines the power transfer efficiency between the two 
ports. The gap between the coils (h) on z axis is the 
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separation gap of the coupler which can be constant or 
variable depending on the application. 

 

Fig. 1. Schematic diagram of the two-port inductive coupler. 

M is calculated according to the known relation: 

 M = k(L1 L2)
1/2 

(1) 

where k is the coupling factor of the two coils. In current 
practice, the value of k is small (0.1 – 0.2), which is why the 
circuit is considered loosely coupled.  

The weak coupling is determined on the one hand by 
achieving a transfer distance as long as possible on z axis and 
on the other hand by the decrease of the power transfer 
sensitivity in the applications where the horizontal position 
of Tx against Rx (x, y axes) is variable (EV case) [6].   

The value of k(M) is usually increased by using magnetic 
flux concentrators made of ferrite material with different 
geometries [11]. 

For the calculation of the maximum power which can be 
transfered in the case of the inductive coupler in Fig.1, we 
start from the relation for the apparent power transmitted 
from port 1 to port 2: 

 S2 = |U20.Isc| (2) 

where U20  is the voltage   at the terminals of port 2 at 
no-load and  Isc is the short-circuit current generated at port 
2. 

After simple calculations using (1), we obtain: 

 S2 = ω.k
2
.L1.I1

2
  (3) 

or  

 S2 = k
2
.S1 (4) 

where S1  is the apparent power available in the primary 
Tx of the coupler. 

Under these conditions, unlike the power transformer for 
which k~1, the Tx-Rx energy transfer indicated by S2 is very 
low mainly due to the very high leakage inductances specific 
to the air core coils of the inductive coupler.   

To increase the power transfer in WPT systems, the 
leakage inductances of the Tx and Rx coils are compensated 
by series or parallel capacitors. 

Classical compensation topologies use simple LC-type 
networks, i.e. S-S, S-P, P-S and P-P (Fig. 2) in which the 
resonant frequencies of the primary and secondary are equal. 

Under these conditions, regardless of the method of 
achieving the primary compensation, the relation (4) 
becomes: 

 S2 = k
2
.S1.Q2    (5) 

where Q2  is the loaded quality factor of the circuit Rx at 
the operating frequency ω.  

 

Fig. 2. The main inductive coupler compensation topologies. a-S-S, b-P-S, 

c-S-P, d-P-P. 

Therefore the topologies in Fig.2 allow the practical 
realization of inductive WPT couplers with transfer outputs 
between 85 and 90 % when Tx and Rx are coaxial.  

In order to be used in practice and compared in terms of 
efficiency, the S-S and S-P topologies are powered by 
voltage inverters and the P-S and P-P topologies are powered 
by current inverters as shown in Figs. 2. 

There are a large number of parameters involved in the 
behavior of the inductive coupler, including: coil geometry, 
operating frequency, heat losses depending on the conductor 
used (solid or litz wire), winding step [12], magnetic field 
concentrators, loaded quality factor at operating frequency, 
etc. 

Although they are simple and economical and therefore 
theoretically treated in many papers, the practical application 
of these topologies under variable load, short circuit, coupler 
coils offset, etc. affects both the operation of the primary 
inverter and the overall efficiency of the WPT system. 

For these reasons, at high powers, when the stability and 
efficiency of the system is decisive, the application of hybrid 
compensation topologies with several energy accumulators 
has become widespread. The most common networks are the 
LCL and LCC topologies, symmetrical in the primary or 
secondary, or mixed (Fig. 3). 

 

Fig. 3. Hybrid compensation topologies. a-LCL, b-LCC. 

In the case of LCL topology [13] with a single resonant 
frequency, the series inductance Lf (usually equal to L1) 
transforms the voltage inverter into a constant current 
inverter, the operation of which is load independent with a 
unit power factor. 

In the case of LCC topology [14], the difference from 
LCL consists in inserting a capacity C1 in series with L1, 
which leads to the decrease of the inductive reactance of L1 
and, as a result, now Lf < L1. The new circuit may have also a 
single resonant frequency given by Lf.Cf = (L1 - Lf).C1. 
Interoperability with other WPT systems is improved and the 
influence of the variation of the coupling factor produced by 
the coils offset (misalignment) as well as the Tx - Rx air gap 
is smaller. 

To make a comparison of the performance of inductive 
couplers, their factor of merit (FOM) [15], a dimensionless 
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parameter  determining the transfer efficiency is defined and 
can be determined based on the relation: 

FOM = kQ = ωM/R (6) 

where Q and R represent the geometric averages of the 
quality factors, respectively of the AC resistances of the two 
coils. 

The transfer efficiency can be expressed as: 

ηmax  ≈  1 - 2/kQ  (7) 

The maximization of product kQ is a necessary measure, 
but the reduction of k (unjustifiably increased gap between 
the coupler coils) must be carefully controlled in practical 
applications because it greatly influences the operating mode 
of the inverter used. 

The process of evaluation of a prototype coupler begins 
by analyzing the constructive variants achieved by 
simulation with 2D or 3D finite element; the physical 
optimized model is achieved and finally the values of the 
characteristic parameters (L, R, M, k, Q) obtained by 
simulation are compared with those experimentally 
determined; the experimental method described in [16] using 
a vector network analyzer (VNA) with impedance meter 
function is useful (Fig.4). 

Fig. 4. Lab evaluation of the parameters of an inductive coupler with 

VNA. 

Currently, inductive couplers are designed for transferred 
powers of 3.7 - 22 kW for EVs or 100 - 300 kW for electric 
buses and even 1MW for Maglev trains and ferries [17]. 

At transfer powers of over 50 kW, the inductive coupler 
has either a structure consisting of three coils powered by 
single or three-phase inverters [18], or has a modular 
construction consisting of four or six coplanar coils powered 
by single-phase inverters with synchronized operation [19]. 

Fig. 5 shows the laboratory test of the complete prototype 
of a inductive WPT system consisting of: frequency 
converter, Tx - Rx resonant circuits, microcontrollers, 
rectifier, filter and artificial load resistor which in this case 
replaces the charging battery. 

The main qualification tests which must be performed on 
a WPT system are at least the following: efficiency test, PFC 
and power test, air gap and offset flexibility, magnetic field 
emissions according to the standards in the following 
paragraph. 

Fig. 5. Testing an EV WPT system for 3.7 kW in the laboratory. At the 

upper part (above Rx) there is the Al shield (2 mm thick) over which a steel 

plate (3 mm thick) simulates the EV chassis. 

B. Standardization of WPT systems 

The standards cited below are the result of extensive 
international collaboration. The IEC standards marked as CD 
(Committee Draft) are versions in the stage of final approval. 
The American standard, SAE J2954 [20] is the first WPT 
standard published as final version in 2020. 

Although the standards are not mandatory, they are still 
fundamental elements of conduct for designers but also for 
researchers when approaching a new concept and especially 
when this concept, although original, must be compatible 
with other existing systems. 

As proof, the success of Qi wireless mobile charging 
system developed by Witricity [21], currently produced on a 
large scale by companies worldwide is based on the 
publication of the company standards by IEC [22]. 

The main standards related to the WPT are: 

- IEC 61980-1:2020, Electric Vehicle Wireless Power 
Transfer (WPT) Systems – Part 1: General requirements; 

- IEC 61980-2, Ed. 1, (CD), Electric Vehicle Wireless 
Power Transfer (WPT) Systems – Part 2: Specific 
requirements for communication between electric road 
Vehicle (EV) and infrastructure with respect to wireless 
power transfer (WPT) systems;  

- IEC 61980-3, Ed. 1, (CD), Electric Vehicle Wireless 
Power Transfer (WPT) Systems – Part 3: Specific 
requirements for the magnetic field wireless power transfer 
systems; 

- ISO 19363:2020 Electrically propelled road vehicles – 
Magnetic field wireless power transfer - Safety and 
interoperability requirements; 

 - SAE J2954:2020 Surface Vehicle Standard – Wireless 
Power Transfer for Light-Duty Plug-in Electric Vehicles and 
Alignment Methodology. 

The SAE standard J2954 [20] has adopted the LCC 
topology [14] and considers the whole set of problems that 
ensure the industrialization of WPT transfer systems, i.e. 
interoperability, frequency band, electromagnetic 
compatibility, protection of living beings from the magnetic 
stray field and last but not least the optimization of the 
design of the inductive coupler, which is the result of tests 
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performed on actual systems in the laboratory and in 
operation for powers between 3.7 and 11 kW. 

C. Operating frequency of wireless power transfer systems 

The general rule governing any WPT system, whether it 
is intended for data or power transfer is its non-conflicting 
co-existence with radio communication systems, which is 
why the ITU (International Telecommunication Union) 
established the so-called ISM frequency band for industrial, 
scientific and medical equipment [23], which includes fixed 
frequencies from 6.78, 13.56, 27 MHz to 2.4 GHz and above. 
Some of these frequencies are used for magnetic resonance-
based power transfer systems [24].  

Furthermore in [23], by an international agreement, the 
use a non - ISM frequency band in the range 10 - 100 kHz is 
allowed for WPTs charging, namely: 

1. 42 – 48 kHz and 52 – 58 kHz for light EVs;
2. 19–21 kHz and 59 – 61 kHz for heavy electric vehicles

(buses) with charging powers of  75 - 300 kW; 
3. 85 ± 0.5% kHz proposed by SAE J2954 [20] for light

EVs with charging powers of 3.7 – 11 kW using low voltage 
AC grid. 

The main reason that led to this choice is related to the 
fact that WPT systems have interference emissions in very 
confined areas around the equipment/vehicle because in the 
near field the magnetic component decreases proportionally 
by 1/d

3
 and, as a result, they are considered localized sources 

of magnetic field or Short Range Devices (SRDs) [25].  

The frequency range 1 (42–48 kHz) was used for the 
prototype built so far in Romania [26], solely due to the 
available litz wire (elementary wire with a diameter of 0.2 
mm). Currently there are litz wires with an elementary wire 
of 0.05 - 0.071 mm which can be used to approach operating 
frequencies up to 200 kHz The transition to range 3 (85 kHz) 
is in progress for the second generation WPT of the same 
EV. 

D. Block diagram of a WPT system 

Fig. 6 shows this block diagram vs. the similar diagram 
used for plug-in charging [27]. The most important 
difference is the replacement of the isolation transformer 
with an inductive coupler and its compensation circuits that 
form a critical area with a significant share in the overall 
efficiency in the absence of a careful planning of its 
parameters.  

Both systems must contain active filters on the supply 
side so as not to generate harmonics in the supply network, 
taking into consideration the high powers flowing through 
them. It can be noted that, in the case of WPT systems, the 
onboard part includes fewer components. As a result, the 
energy transfer efficiency of the two systems can be 
comparable under a suitable design. 

When using modern semiconductor components with SiC 
[28], the current overall efficiency of the WPT exceeds 90 % 
when the offset of the coupler coils is within the limits 
allowed by the system. 

  a    b 

Fig. 6. Comparison between the block diagrams of plug-in equipment (a) 

and WPT (b). EVSE-Electric Vehicle Service Equipment, OBC-OnBoard 

Charger, PFC-Power Factor Correction. 

E. Storage batteries as a load for the inverter used for the 

WPT system 

In most cases, the WPT systems are used to charge 
storage batteries, the charging mode of which is a 
combination of constant current (CC) charging followed by a 
final constant voltage (CV) charging as shown in Fig. 7. 

Fig. 7. Typical quantities in the storage battery charging process. 

During this process, the inverter operates at variable 
power (P) in both CC and CV mode, noting that its peak 
power is generated at the end of the constant current area, 
and then it decreases 5 - 7 times in the constant voltage area. 

This operating mode must be taken into account when 
designing the system by using current and voltage sensors in 
the automatic control loop so that the efficiency of the 
inverter is not affected. In the case of EVs, the 
charging/discharging mode is governed by the specific “C” 
parameter which represents the battery charging/discharging 
rate (C-Rate). It represents the numerical value of the ratio 
(A/Ah) of the charging/discharging current in A to the 
battery capacity in Ah. A normal charge is to 0.15 C which 
means, for example, for a 60 Ah battery, a 10A charging 
current for about 6 hours. Traction Li-Ion batteries are sized 
for 1 or 2 C mode. Fast or ultra-fast charging of certain EV 
batteries can be performed to 3 C (180 A in 20 minutes in the 
above case) or even to 4 C, under continuous temperature 
monitoring and forced cooling, a process performed on this 
systems [29]. Improving the control algorithms of the state of 
charging (SOC) and state of health (SOH) of the battery is 
one of the current endeavors of the research in the field so 
that the concerned regime will neither affect the operating 
safety, nor the battery life [30]. 

In the case of WPT charging, it should be noted that this 
is a typical intermittent charging system: the battery is 
charged automatically, without operator intervention, every 
time the EV reaches a public charging station and parks there 
even for a few minutes. This operating mode results in lower 
power consumption and increased battery life. In the case of 
urban electric buses, the system is widely practiced on the 
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route or at the end of the line where it is called “opportunity 
charging”. 

III. TECHNOLOGICAL READINESS LEVEL OF WPT SYSTEMS

There are technical influencers who consider that the 
technologies based on the wireless transmission of 
information and more recently of power are inefficient and 
dangerous to health although all studies conducted so far do 
not lead to this conclusion [31].  

In the case of the WPT there is still an opinion that the 
power and transfer efficiency are low as opposed to plug-in 
transmission. The actual situation is as follows: on the one 
hand WPT equipment with powers up to 300 kW was built 
and used in practice on buses [19] and, on the other hand, for 
the plug-in charging system, losses were not considered: in 
the transformer from the charging station, in the connection 
cables, in the connectors, in the charger on board the EV 
which provides the AC/DC conversion. The overall 
efficiency of any equipment is the product of the partial 
efficiencies of the blocks in the system. If equal efficiencies 
of 97% are considered in theory in the case of four blocks, an 
overall efficiency of 89% will be reached! For a current 
WPT system, the efficiency is comparable to the plug-in 
system, i.e. 85 - 90% [32]. 

In both cases, the transition from Si semiconductors used 
in current power electronics to SiC or GaN semiconductors 
will increase the overall efficiency by at least 95%. 

 Since it is a disruptive technology, the number of WPT 
pieces of equipment in operation so far is relatively small, 
because the “technological readiness level” or TRL is lower. 
Regardless of the field of activity, TRL [33] defines 1 - 9 
stages of maturity and TRL 4-6 is considered the bridge 
between scientific research and engineering application.  

In the case of WPT, the highest level (9) has been 
reached (meaning “Technology proven through successful 
operations”) by some companies: KAIST (Korea), Conductix 
– Wampfler (Germany), Plugless Power (US) etc mentioned
in the FP 7 ”FABRIC” project [34], but there are many other 
companies with level 7 – 8 achievements.  

In Romania, the activity in the WPT field started almost 
10 years ago in several university centers and research 
institutes is mostly focused on theoretical and experimental 
research included in doctoral theses, bachelor’s theses and 
scientific publications and less on functional models or 
prototypes which have reached in some cases the TLR level 
3, i.e. “demonstrating the functionality of the concept, in 
relation to the critical functionalities of the system, through 
analytical and experimental studies”. The explanation for this 
situation consists, to a certain extent, in the almost non-
existent funding offered by the Romanian Research 
Authority for this disruptive technology. 

In Romania the highest known level is level 6 [35] in 
which the real-scale prototype, capable of fulfilling all the 
functions required by the operating system was tested in an 
environment relevant to the real operating conditions. 

IV. WPT CHARGING SYSTEM FOR

 DACIA ELECTRON EV AND OTHER  APPLICATIONS 

The DACIA Electron automobile based on the 
mechanical structure of the Dacia Sandero automobile was 

built by CCIA (R&D Center for the Automobile Industry) at 
the University of Pitesti with the support of Renault RTR 
Romania in 2016 and publicly presented in 2017 at the EV 
Show 2017 [27]. It has a “combined charging system” 
consisting of the classic plug-in system and a WPT Charging 
system built by ACER Romania [36] in collaboration with 
INDA-Eltrac SRL, Craiova [37] (Fig. 8). 

Fig. 8. WPT charging system mounted on DACIA Electron EV [27]. 

This is an industrial prototype (TRL 6) with a 
standardized load power of 3.7 kW for a ground clearance 
ranging between 80 and 110 mm (currently increased to 140 
mm). It performs the CC-CV charging cycle for a modern 
cobalt-free LPF (LiFePO4) battery [35] of 12.3 kWh, with 
the voltage of 205 V and weight of 160 kg. The range of this 
EV is at least 100 km. 

The prototype is our starting point for R&D on WPT 
power transfer systems with powers over 1 kW, such as: 

- urban rail vehicles (catenary-free trams); 
- buses, minibuses, vans and commercial vehicles; 
- unmanned aerial vehicles (UAV);  
- unmanned underwater vehicles (UUV);   
- factory transportation equipment including autonomous 

(AGV); 
-  robotics and radar rotating platforms 

ASSESSMENT OF HUMAN EXPOSURE TO THE 
MAGNETIC FIELD GENERATED BY THE WPT 

Although basically there is no person inside the EV 
during battery charging, the limits set by ICNIRP [9] for the 
protection of persons who are for various reasons in the 
vicinity or passing by must be observed and certified by 
measurements performed by accredited laboratories. Fig. 9 
presents a comparison of the evolution of the permissible 
level of exposure during 1998 – 2010 [9]. 

Fig. 9.   Evolution of the ICNIRP [9] exposure level during 1998 - 2010: 
1-occupational 1998, 2-public 2010, 3-public 1998, 4-occupational 2010. 

In the 10 - 100 kHz frequency range of interest for 
inductive WPT systems, a relaxation took place: the level of 
magnetic field allowed for the public has increased from 
6.25 µT to 27 µT and for workers from 50 µT to 100 µT. 
This increase is the result of applying the precautionary 
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principle on which international standards for exposure to 
electromagnetic radiation are generally based. 

The distance at which the measurement is taken is 
500 mm from the edge of the inductive coupler or 300 mm 
from the side edge of the EV at a height of 0.7 m from the 
ground. An example of 42 kHz operating frequency 
measurements for DACIA Electron is shown in Fig. 10 a, b, 
highlighting the asymmetrical position of the Rx receiver 
required by the design of  this vehicle chassis (Sandero) to 
maintain the ground clearance. The level of 27 µT is 
exceeded only in that area (34 µT) To decrease the B value 
below 34 µT (red) to 22 µT, additional shielding of Rx was 
required. 

 

a) 

 

b) 

Fig.10. Magnetic B field in µT around EV DACIA Electron. a) Rx location, 

b) Three-dimensional measured B values for 3.7 kW transferred power (top 

view). 

V. WPT PERSPECTIVES AND ASSOCIATED PROBLEMS 

At present it is clear that, regardless of the current 
opinion of users of automobiles with internal combustion 
engines, EVs are already winning due to the measures to 
limit the manufacture and use of Diesel engines in some EU 
countries. In the very near future EVs will become 
autonomous and connected vehicles and then it will not be 
possible to design an autonomous EV without an automatic 
battery charging based on WPT.  

Discussions that the use of EVs aggravates pollution 
caused by fossil fuels used to increase the electricity 
generation in conventional power plants are unjustified for 
two reasons: first, environmental pollution is especially 
dangerous in large urban areas and then, the renewable 
sources associated with energy storage systems will totally or 
partially compensate for the increase in electricity 
consumption [38]. In addition, as the number of EVs 
increases, they will be able to provide, if necessary, the 
electricity needed in certain critical situations by using 
bidirectional inverters (conversion of G2V to V2G system). 

It should be noted that the change of the current paradigm 
in urban electric mobility is also under discussion, by 
building small EVs (less than 2 m in length), with a range 
limited to 30-50 km, parked perpendicular to the road and 
charged right there by WPT according to the expression: 
“Smaller, lighter, greener”. Such examples already exist in 
the mass production [39], while EVs with the current 
dimensions to be intended for long-distance travel.     

 Here are some of the concerns of the near future related 
to electric mobility and wireless power transfer: 

- Accelerated generalization of electric public transport in 
urban areas (buses, commercial vehicles, etc.); 

- Increasing the public acceptability of the WPT [40]; 

- The improvement of the WPT energy transfer efficiency 
up to 95%, by using modern switching circuits with SiC or 
GaN;  

- The transition from the plug-in system to the WPT 
system with a transitory coexistence period; 

- The recycling used Li-Ion batteries taking into account 
the limited global reserves of Li, Co, etc.; 

- The achievement of virtual power plants (static storage 
from renewable energy sources) and the expansion of 
individual prosumer systems [38]; 

- Realization of fast and ultra-fast EV charging stations 
and coordination of energy consumption through Smart Grid 
technique;  

- Generation of EVs artificial noise to warn cyclists and 
pedestrians (the probability of an accident caused by EVs is 
twice as high as opposed to vehicles fitted with internal 
combustion engines) [41]; 

- Promoting Romanian WPT R & D projects within the 
national cluster network “WPT Rom Net” [42] open to all 
research institutions and production companies, local public 
administration authorities, employers’ associations or 
professional associations, legal entities and individuals 
interested in contributing to the development and practical 
application of WPT knowledge.  

- Publishing in English, to increase the visibility of 
Romanian research in the field, using also the special 
dedicated issues of the “Annals of the University of Craiova 
- Electrical Engineering Series” [43]. 

VI. CONCLUSIONS 

The paper aims to draw the attention of potential users 
and funders to the applications and benefits of wireless 
power transfer (WPT).  

  The WPT has many advantages for the most diverse 
applications of modern technology due to the absence of 
contacts and their wear, ease of use in aggressive or 
explosive environments, conductive liquids (marine 
environment), the possibility of simultaneous power transfer 
and data communication and its efficiency comparable to 
plug-in systems on short and medium distances, at power 
levels reaching tens or hundreds of  kW. 

  The paper provides a brief overview of the technical 
solutions, applications and perspectives offered by the WPT 
in light of the growing interest in reducing pollution in large 
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cities and the prospect of large-scale use of autonomous and 
connected EVs.  

 A practical example is the 3.7 kW industrial WPT 
prototype built for charging the battery fitted on EV DACIA 
Electron. 

The integration in the Smart Grid of EVs fast/ultra-fast 
charging stations, including renewable energy sources, 
energy storage systems and proper management of energy 
sources and energy demand will result in energy efficient 
solutions. 
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Abstract – In this paper, the rotor field-oriented control is 

applied for a three-phase induction motor used in electric 

traction of an autonomous locomotive powered by a battery. 

First, the operating equations in the rotor field-oriented 

system are introduced. Then, the control scheme based on 

the structural scheme and operational equations are pre-

sented. After referring to the design of the controllers, the 

performances of the control system during the start-up pro-

cess by prescribing a ramp speed and step rotor flux are 

addressed and analyzed. Four values of the prescribed speed 

are taken into consideration.  Through the presented results, 

the synthesis of the control system and control algorithm are 

validated. 

Cuvinte cheie: control cu orientare după fluxul rotoric, tracți-

une electrică, locomotivă autonomă, motor trifazat de inducție, 

regulator cu histerezis, regulator PI. 

Keywords: rotor field-oriented control, electric traction, au-

tonomous locomotive, three-phase induction motor, hysteresis 

controller, PI controller. 

I. INTRODUCTION 

In the 1970s, Haase [1] and Blaschke [2] introduced the 
so-called field-orientation technique applied to the induc-
tion motor, which involves decoupling the torque and 
magnetic flux as with the direct current motor. In a refer-
ence frame that rotates simultaneously with the rotor flux, 
the torque can be controlled by the q-axis component of 
the stator current vector.  

The best known implementation of the rotor field-
oriented control is the indirect control. According to this, 
the rotor flux is estimated and not measured, based on the 
associated equations [3]. 

When the voltage control is taken into consideration, 
two control paths exist in the structure of the rotor field-
oriented control [4]-[6]. Within the first path, the external 
loop is of the speed and the subordinate loop is of the ac-
tive current. In the second path, the external loop is of the 
rotor flux and the subordinate loop is of the reactive cur-
rent.  

The difficulty in the implementation of the voltage con-
trol consists of the need to design four controllers. But, if 
a control structure with current control is adopted, only 
two controllers remain in the system to be designed and 
the inverter control is performed by a hysteresis controller 
[6]. 

Among the challenges of implementing the rotor field-
oriented control, the accurate estimation of the motor pa-
rameters and ensuring the most precise control of the cur-
rent’s components are highlighted [7]-[14]. In [11], the 
proposed strategy involves the use of the rotor field-

oriented model equations to estimate the electromagnetic 
torque and rotor resistance.  

To estimate the rotor resistance, the authors of [10] de-
signed a scheme based on the rotor flux model and fuzzy 
controller. In [14], a sensorless fuzzy logic based indirect 
vector control with an adaptation scheme for the rotor 
resistance using neural learning algorithm was taken into 
consideration. 

An adaptive sliding-mode observer was proposed in [8], 
and the online adaptation of the rotor resistance was 
achieved. A sliding mode observer based on rotor-flux 
was presented in [12] and a predictive field-oriented con-
troller was used. 

To keep the speed and torque of the induction motor 
oriented on the rotor field during the supply voltage drop, 
a new control technique was analyzed in [13], in which 
the d-axis and q-axis current control is based on solving 
the voltage, current, and torque constraints in the current 
plane. 

The results presented in this paper were obtained by 
carrying out the PACETSINEFEN project in the frame of 
POC program, European Regional Development Fund. 
The implementation of the proposed control system will 
be done on an electric traction physical model of a loco-
motive powered by a battery. 

The next part of this paper is organized as follows. In 
section II, the operating equations and control scheme are 
presented. Next, the attention is directed to the synthesis 
of speed and rotor flux controllers. Then, section IV pre-
sents the performance of the system, in which, the start-up 
process by prescribing a ramp speed and a step rotor flux, 
for four prescribed speeds, are taken into consideration. 
The paper ends with some conclusions and future research 
directions. 

II. OPERATING EQUATIONS AND CONTROL SCHEME

The equation of operation are expressed in the (d, q) 
reference frame with the d-axis oriented in the direction of 
the rotor flux (Fig. 1). As shown, the q-axis component of 
the rotor flux is zero. λ is the angle between the rotating 
(d, q) reference frame and the fixed reference frame (α, β). 

Fig. 1. Orientation of the rotating (d, q) reference frame. 
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The following expression of the electromagnetic torque 
shows that, if the rotor flux is constant, the electromagnet-
ic torque can be controlled only through the q-axis com-
ponent of the rotor current.  

 . (1) 

The equations of the rotor circuit are [15]: 

 ; (2) 

 , (3) 

where the expressions of the rotor flux on the two axes 
are: 

 ; (4) 

  (5) 

The equation of motion is added to the system of equa-
tions. 

 . (6) 

The following quantities are used in equations (1) - (6): 

ir, Ψr - the spatial phasors of the rotor currents and rotor 
flux referred to the system (d, q); 
m, ms – the electromagnetic and static torque respectively; 
Rs, Rr – the stator and rotor resistances referred to the sta-
tor; 
Lr – the inductance on a rotor phase referred to the stator; 
Lm – the magnetization inductance; 
p – the number of pole pairs; 
ω – the angular velocity of the rotor; 
ω1 – the electrical speed of the rotating coordinate system. 

The adopted control structure shown in Fig. 2 involves 
the current control, which is easier to implement com-
pared to the voltage control. As shown, to synthesize the 
control signals for transistors, a three-phase hysteresis 
controller (Hys) is used. The existence of two controllers 
(R for speed and R for the rotor flux), the transfor-
mation blocks for the reference frame ((d,q) →(α,β) and 

(α,β)→(a,b,c)) and the speed transducer (T) is highlight-
ed. The rotor flux is calculated based on the stator current 
and the motor speed and the position angle  of the rotat-
ing reference frame is calculated based on the sine and 
cosine functions, as follows [6], [15]:  

  (7) 

As illustrated in Fig. 2, there are two independent con-
trol paths, for speed and active current control and for 
rotor flux and reactive current respectively.  

 
Fig. 2. Structure of the control system with current control. 

In the first path, the prescribed active current is ob-
tained at the output of the speed controller, whereas, in the 
second path, the prescribed reactive current is obtained at 
the output of the flux controller. 

III. SYNTHESIS OF SPEED AND ROTOR FLUX CONTROLLERS 

To express the involved transfer functions of the two 
controllers, the operational equations in the Laplace do-
main were used [6]. 

The parameters of the PI speed controller (1 and ) 
which intervene in its transfer function,  

 , (8) 

were determined using the symmetry criterion [6]. 

 , (9) 

where TΣ is the dead time of the active current control 
loop (the sum of the speed transducer time constant and 
the sampling time Ts), the amplification factor Kf is: 

  (10) 

and the mechanical time constant (Tm) is: 

  (11) 

The parameters of the PI flux controller (1 and ) in 
the transfer function,  

 , (12) 

were provided by using the Modulus criterion in Kesller 
variant [6]. 

IV. CONTROL SYSTEM PERFORMANCE 

The performance of the control system was assessed by 
using a specific Matlab-Simulink model developed for the 
experimental test platform. Table I summarizes the main 
parameters of the voltage source inverter and traction mo-
tor and Table II contains the parameters of the two con-
trollers. 

TABLE I.  
MAIN PARAMETERS OF THE VOLTAGE SOURCE  INVERTER AND 

TRACTION MOTOR 

Inverter parameters 

Uin 

(V) 

UNout 

(V) 

PN 

(kVA) 

fN 

(Hz) 

f 

(Hz) 

Cd 

(µF) 

UCdN 

(V) 
IGBTs 

750 500 190 50 0-135 1400 1800 CM2400HC-34H 

Traction motor rated parameters 

UN 

(V) 

P2N 

(kW) 

f1N 

[(Hz) 

IN 

(A) 
cosφN ηN sN 

nN 

(rpm) 

MN 

(Nm) 

500 155 45 218 0.888 0.924 0.02518 1316 1125 

R1 

(Ω) 

X1N 

(Ω) 

Lσ1 

(mH) 

R2 

(Ω) 

X2N 

(Ω) 

Lσ2 

(mH) 

Rm 

(Ω) 

Xm 

(Ω) 

Lm 

(mH) 

0.035 0.0621 0.2197 0.0358 0.067 0.2387 89.38 3.2507 11.497 

TABLE II.  
PARAMETERS OF THE SPEED AND FLUX CONTROLLERS  

KpΩ TiΩ KpΩ TiΩ Kpψ Tiψ 

Ωp≥ΩN/2 Ωp<ΩN/2 
36 0.32 

100 0.003 200 0.004 
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