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Cohomological properties of the massless tensor field
with the mixed symmetry (k, 1). I. Results on the
cohomology of the exterior longitudinal differential

C. Bizdadea∗, S. O. Saliu†, M. Toma
Department of Physics, University of Craiova
13 Al. I. Cuza Str., Craiova 200585, Romania

Abstract

In this former part of a paper dedicated to the computation of local BRST co-
homology for a free massless tensor field with the mixed symmetry (k, 1) (k ≥ 4) we
focus on the main cohomological properties of the exterior longitudinal differential.

PACS: 11.10.Ef

1 Introduction

Real tensor fields transforming according to exotic representations of GL(D,R) corre-
sponding to two-column Young diagrams with (k+1) cells and k lines (“hook” diagrams)
or, briefly, tensor fields with the mixed symmetry (k, 1) have been studied starting more
than two decades ago in [1]–[5] and more recently (inclusively within the BRST setting)
in [6]–[9]. Such fields are present for instance in the bosonic sector of Chern–Simons
gravities in odd dimensions [10]–[12] due to the fact that the free limit of their massless
version describes one of the dual formulations of linearized gravity in k + 3 spacetime
dimensions. The limit k = 1 provides the linearized Einstein–Hilbert action without
cosmological terms, known as the Pauli–Fierz model [13, 14].

The aim of this paper is to analyze the main properties of the local BRST cohomology
for the free theory describing a massless tensor field with the mixed symmetry (k, 1) for
k ≥ 4. The case k = 2 is covered in [15] and k = 3 respectively in [16]. To this end
we rely on the general BRST cohomological results for gauge field theories with a well-
defined Cauchy order [17]–[20] completed by specific techniques and results from [15, 16]
and [21]–[26]. In this context the findings on some BRST cohomological aspects related to
a massless tensor field corresponding to a two-column non-rectangular Young tableau [27]
are also interesting. More precisely, in this former part we will evaluate the cohomology
of the exterior longitudinal differential and its local version. The latter part [28] will
be dedicated to the computation of the local cohomology of the Koszul–Tate differential
and of its invariant version and finally to the study of the core properties of the local
cohomology of the BRST differential in maximum form degree. We use the conventions,
notations, and results from [29] on the Lagrangian formulation and BRST symmetry of a
single massless tensor field (k, 1).

∗e-mail address: bizdadea@central.ucv.ro
†e-mail address: osaliu@central.ucv.ro
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2 Lagrangian formulation. BRST symmetry

Let tμ1...μk|α be a real tensor field with the mixed symmetry (k, 1) on a D-dimensional
Minkowski space M, meaning it is antisymmetric with respect to its first k indices and
satisfies the identity t[μ1...μk|α] ≡ 0, where [μ . . . ν] stands for full antisymmetry. We assume
that M is endowed with the metric σμν = σμν = (− + . . .+). The trace of this field,
tμ1...μk−1

= tμ1...μk|ασ
μkα, defines an antisymmetric tensor of order (k − 1).

The Lagrangian formulation of a free, massless tensor field (k, 1) (k ≥ 4) relies on the
general principle of gauge invariance in terms of a generating set of gauge symmetries

δ(1)
θ ,

(1)
ε
tμ1...μk|α = ∂[μ1

(1)

θ μ2...μk]|α + ∂[μ1
(1)
ε μ2...μkα] + (−)k+1(k + 1)∂α

(1)
ε μ1...μk , (1)

which renders in the limits k = 2 and k = 3 the well-known results [15, 16]. The

gauge parameters
(1)

θ display the mixed symmetry (k − 1, 1), so they are antisymmetric

in their first (k − 1) indices and fulfill the identity
(1)

θ [μ1...μk−1|α] ≡ 0, while
(1)
ε are fully

antisymmetric. It has been shown in [29] that the corresponding Lagrangian reads as

St
0[tμ1...μk|α] = − 1

2·(k+1)!

∫ [
Fμ1...μk+1|αF

μ1...μk+1|α − (k + 1)Fμ1...μkF
μ1...μk

]
dDx, (2)

where D ≥ k+2 in order to ensure a non-negative number of physical degrees of freedom.
The tensor Fμ1...μk+1|α is linear in the first-order derivatives of field components

Fμ1...μk+1|α = ∂[μ1tμ2...μk+1]|α, (3)

exhibits the mixed symmetry (k + 1, 1), and possesses the gauge transformation

δ(1)
θ ,

(1)
ε
Fμ1...μk+1|α = (−)k+1k∂α∂[μ1

(1)
ε μ2...μk+1]. (4)

Its trace, Fμ1...μk = Fμ1...μk+1|ασ
μk+1α, is completely antisymmetric

Fμ1...μk = ∂[μ1tμ2...μk] + (−)k∂αtμ1...μk|α, (5)

and presents the gauge variation δ(1)
θ ,

(1)
ε
Fμ1...μk = −k∂α∂[α

(1)
ε μ1...μk]. The generating set of

gauge transformations of action (2), given by (1), has been shown in [29] to be Abelian
and off-shell reducible of order (k − 1).

The field equations
δSt

0

δtν1...νk|α
≡ 1

k!
T ν1...νk|α ≈ 0, (6)

are expressed in terms of the tensor T ν1...νk|α, linear in the field components tμ1...μk|β,
first-order in its derivatives, and with the mixed symmetry (k, 1)

T ν1...νk|α = �tν1...νk|α + ∂μ
(
(−)k∂[ν1tν2...νk]μ|α − ∂αtν1...νk|μ

)
+ (−)k+1∂α∂[ν1tν2...νk]

+σα[ν1
[
(−)k�tν2...νk] + ∂μ

(
(−)k+1∂βt

ν2...νk]μ|β − ∂ν2tν3...νk]μ
)]
. (7)

It is useful to write T ν1...νk|α in terms of the tensor Fμ1...μk+1|β introduced in (3)

T ν1...νk|α = ∂μF
μν1...νk|α − σα[ν1∂μF

ν2...νkμ]. (8)
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The most general gauge-invariant quantities constructed out of tμ1...μk|α and its space-
time derivatives are given by the components of the “curvature tensor”

Kμ1...μk+1|αβ = ∂αFμ1...μk+1|β − Fμ1...μk+1|α ≡ ∂[μ1tμ2...μk+1]|[β,α], (9)

together with their derivatives. The tensor Kμ1...μk+1|αβ is linear in the original field,
second-order in its derivatives, and displays the mixed symmetry (k + 1, 2), so it is sepa-
rately antisymmetric in its first (k + 1) indices and in the last two ones and satisfies the
first Bianchi identity K[μ1...μk+1|α]β ≡ 0. Moreover, it satisfies the second Bianchi identity

∂[μ1Kμ2...μk+2]|αβ ≡ 0, Kμ1...μk+1|[αβ,γ] ≡ 0. (10)

The invariance of action (2) with respect to the gauge transformations (1) is equivalent
to the Noether identities ∂ν1T

ν1...νk|α ≡ 0, ∂αT
ν1...νk|α ≡ 0, while the reducibility of this

generating set of gauge symmetries shows that not all Noether identities are independent.
The free theory of a massless (k, 1) tensor field satisfies the general regularity conditions
[30] and generates a linear gauge theory with the Cauchy order equal to (k + 1).

Next, we briefly review the antibracket-antifield BRST symmetry of this free theory,
exposed in [29]. The first step of this procedure requires the identification of the algebra on
which the BRST differential s acts. The BRST generators are of two kinds: fields/ghosts
and antifields. The ghost spectrum is composed of the tensor fields{{(m)

C μ1...μk−m|α,
(m)
η μ1...μk−m+1

}
m=1,k−1

,
(k)
η μ

}
, (11)

where
(1)

C and
(1)
η are respectively associated with the gauge parameters

(1)

θ and
(1)
ε from

(1), while the other ghost fields correspond to the reducibility parameters detailed in

[29]. We ask that
(m)

C with m = 1, k − 1 possess the mixed symmetry (k − m, 1), and
therefore are antisymmetric in their first (k−m) (where applicable) and fulfill the identities
(m)

C [μ1...μk−m|α] ≡ 0, m = 1, k − 1, while
(m)
η with m = 1, k − 1 remain antisymmetric. For

further purposes we make the compact notation

ΦA ≡
{
tμ1...μk|α,

{(m)

C μ1...μk−m|α,
(m)
η μ1...μk−m+1

}
m=1,k−1

,
(k)
η μ

}
. (12)

The antifield spectrum corresponds to the original fields and to the newly added ghosts,
being structured into

Φ∗
A ≡

{
t∗μ1...μk|α,

{(m)

C

∗μ1...μk−m|α
,
(m)
η

∗μ1...μk−m+1}
m=1,k−1

,
(k)
η

∗μ}
. (13)

The mixed symmetry/antisymmetry properties of the antifields are the same with those

of the corresponding fields/ghosts, so in particular t∗[μ1...μk|α] ≡ 0,
(m)

C

∗[μ1...μk−m|α]
≡ 0,

m = 1, k − 1.
The BRST differential of this free model splits into

s = δ + γ, s2 = 0 ⇔ (δ2 = 0, γ2 = 0, δγ + γδ = 0), (14)

with δ the Koszul–Tate differential, N-graded in terms of the antighost number agh
(agh(δ) = −1) and γ the exterior longitudinal derivative, which is a true differential

3



here, anticommuting with δ and N-graded according to the pure ghost number pgh
(pgh(γ) = 1). These two degrees are independent (agh(γ) = 0, pgh(δ) = 0). The
overall degree of the BRST differential is the ghost number (gh), defined as the difference
between pgh and agh, such that gh(s) = gh(δ) = gh(γ) = 1. Consequently, the BRST
differential is Z-graded in terms of gh. The standard rules of the antibracket-antifield for-
malism endow the generators of the BRST complex with the gradings collected in Table
1, where ε denotes the Grassmann parity.

BRST generator pgh agh gh ε
tμ1...μk|α 0 0 0 0{(m)

C μ1...μk−m|α
}
m=1,k−1

m 0 m m mod 2{
(m)
η μ1...μk−m+1

}
m=1,k

m 0 m m mod 2

t∗μ1...μk|α 0 1 −1 1{(m)

C

∗μ1...μk−m|α}
m=1,k−1

0 m+ 1 −(m+ 1) (m+ 1) mod 2{
(m)
η

∗μ1...μk−m+1}
m=1,k

0 m+ 1 −(m+ 1) (m+ 1) mod 2

Table 1: Gradings of BRST generators.

The actions of the operators δ and γ on the BRST generators (assuming they act like
right derivations) that comply with all the BRST requirements are expressed by

γtμ1...μk|α = ∂[μ1
(1)

C μ2...μk]|α + ∂[μ1
(1)
η μ2...μkα]

+ (−)k+1(k + 1)∂α
(1)
η μ1...μk

, (15)

γ
(m)

C μ1...μk−m|α = ∂[μ1
(m+1)

C μ2...μk−m]|α + ∂[μ1
(m+1)
η μ2...μk−mα]

+(−)k−m+1(k −m+ 1)∂α
(m+1)
η μ1...μk−m

, m = 1, k − 2, (16)

γ
(m)
η μ1...μk−m+1

= k−m
k−m+2

∂[μ1
(m+1)
η μ2...μk−m+1]

, m = 1, k − 1, (17)

γ
(k−1)

C μ1|α = ∂(μ1
(k)
η α), γ

(k)
η μ = 0, γΦ∗

A = 0, (18)

δΦA = 0, δt∗μ1...μk|α = − 1
k!
T μ1...μk|α, (19)

δ
(1)

C

∗μ1...μk−1|α
= −∂μ

(
kt∗μμ1...μk−1|α + (−)kt∗μ1...μk−1α|μ), (20)

δ
(m)

C

∗μ1...μk−m|α
= (−)m∂μ

(
(k −m+ 1)

(m−1)

C

∗μμ1...μk−m|α

+(−)k−m+1
(m−1)

C

∗μ1...μk−mα|μ)
, m = 2, k − 2, (21)

δ
(k−1)

C

∗μ1|α
= (−)k−1∂μ

(k−2)

C

∗μ(μ1|α)
, δ

(1)
η

∗μ1...μk
= (−)k(k + 1)∂αt

∗μ1...μk|α, (22)

δ
(m)
η

∗μ1...μk−m+1

= (−)k(k −m+ 2)∂α
(m−1)

C

∗μ1...μk−m+1|α

+ (−)m(k−m+2)(k−m+1)
k−m+3

∂μ
(m−1)
η

∗μμ1...μk−m+1

, m = 2, k, (23)
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with T μ1...μk|α like in (7). These definitions may be written more compactly if we perform
some linear transformations on the ghosts/antifields without affecting their homogeneity
with respect to the various gradings

(m)

C ′
μ1...μk−m||α ≡

(m)

C μ1...μk−m|α + (k −m+ 2)
(m)
η μ1...μk−mα

, (24)

(m)

C ′
∗μ1...μk−m||α

≡
(m)

C

∗μ1...μk−m|α
+ 1

k−m+2

(m)
η

∗μ1...μk−mα

, (25)

with m = 1, k − 1. The double bar “||” means full antisymmetry with respect to the
indices placed before (if applicable) without further identities. The redefined variables are
useful at various computations since for every m = 1, k − 1 the independent components

of the ghost tensor
(m)

C ′ are given by the union between the independent components of

all ghosts of pure ghost number m, namely
(m)

C and
(m)
η . Similarly,

(m)

C ′
∗
gather all the

independent components of the antifields with the antighost number equal to (m + 1).
Now, some of formulas (15)–(23) take a simpler form

γtμ1...μk|α = ∂[μ1

(1)

C ′
μ2...μk]||α − 1

k+1
∂[μ1

(1)

C ′
μ2...μk||α], (26)

γ
(m)

C ′
μ1...μk−m||α = ∂[μ1

(m+1)

C ′
μ2...μk−m]||α, m = 1, k − 2, (27)

γ
(k−1)

C ′
μ1||α = 2∂μ1

(k)
η α, δ

(1)

C ′
∗μ1...μk−1||α

= −k∂μt
∗μμ1...μk−1|α, δ

(k)
η

∗α
= (−)k2∂μ1

(k−1)

C ′
∗μ1||α

, (28)

δ
(m)

C ′
∗μ1...μk−m||α

= (−)m(k −m+ 1)∂μ
(m−1)

C ′
∗μμ1...μk−m||α

, m = 2, k − 1. (29)

3 Local BRST cohomology. Generalities

All cohomological computations will be carried out on the algebra of local differential
forms with coefficients from the BRST algebra without explicit dependence on the space-
time coordinates xμ, to be denoted by Λ. In other words, the form coefficients are elements
of the BRST algebra A of local “functions” that do not explicitly depend on the global
coordinates of the Minkowski spacetime M, and therefore polynomials in ghosts, anti-
fields, and their spacetime derivatives up to a finite order, ‘smooth’ in the original tensor
field with the mixed symmetry (k, 1) and also polynomials in its derivatives up to a finite
order. Consequently, the algebra Λ will inherit the four gradings of the BRST algebra
[the Z2-grading in terms of the Grassmann parity ε, the Z-grading according to gh as well
as the two N-gradings involving agh and pgh] introduced via Table 1, accompanied by

ε(dxμ) = 1, ε(dxμ1 ∧ . . . ∧ dxμp) = p mod 2, (30)

agh(dxμ) = 0, pgh(dxμ) = 0, gh(dxμ) = 0, (31)

where ∧ is the symbol for wedge product. In addition, Λ is endowed with a supplementary
N-grading in terms of the form degree deg

Λ =
⊕
p∈N

[p]

Λ, deg(
[p]
ω) = p ⇔ [p]

ω ∈
[p]

Λ, (32)

[p]
ω = 1

p!
aμ1...μpdx

μ1 ∧ · · · ∧ dxμp , aμ1...μp ∈ A. (33)
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Since the dimension of M is by hypothesis finite and denoted by D, the decomposition
(32) stops at D; all forms that are homogeneous with respect to deg like in (33) and with
the form degree p > D vanish. The operators δ, γ, and s are extended to the algebra Λ
via relations (15)–(23) together with

δ(dxμ) = 0, γ(dxμ) = 0, s(dxμ) = 0 (34)

and by assuming their actions as right derivatives on Λ with respect to the wedge product.
In this context we recall that for any element of the form (33) with aμ1...μp ∈ A of well-
defined Grassmann parity, ε(a), we have that

ε(
[p]
ω) = [ε(a) + p] mod 2. (35)

In this way all the properties of the operators δ, γ, and s = δ+γ are transferred from the
BRST algebra A to the algebra of local forms Λ. In particular, these operators remain
differentials and δ still anticommutes with γ. Also, δ continues to be acyclic on Λ in
strictly positive values of the antighost number agh, H(δ) ≡ H0(δ), and it makes sense
to compute the cohomology algebras H(γ|H0(δ)) and H(s). Moreover, the isomorphisms
Hj(s) 	 H0

−j(δ) for j < 0 and H l(s) 	 H l(γ|H0(δ)) for l ≥ 0 still hold. Regarding the
last relations, j from Hj(s) stands for the ghost number, (−j) from H0

−j(δ) represents the
antighost number, and the superscript 0 refers to the value equal to zero of pgh; l from
H l(s) means the ghost number, while l from H l(γ|H0(δ)) signifies the pure ghost number.
From (34) we notice that the form degree of δ, γ, and s is equal to zero

deg(δ) = deg(γ) = deg(s) = 0. (36)

We define a linear operator d : Λ → Λ as an odd, right derivation

da = ∂μa dx
μ, a ∈ A, d(dxμ) = 0, (37)

d(ω1 ∧ ω2) = ω1 ∧ dω2 + (−)ε(ω2)(dω1) ∧ ω2, ω1,2 ∈ Λ, (38)

where it was assumed that ω1,2 possess well-defined Grassmann parities. The operator
d becomes a differential on Λ with respect to deg, traditionally known as the exterior
spacetime differential: ε(d) = 1, deg(d) = +1, d2 = 0. From (31) and (37) it follows that

agh(d) = 0, pgh(d) = 0, gh(d) = 0. (39)

The operators δ, γ, and s are also differentials that anticommute with d on Λ

O2 = 0 = d2, Od+ dO = 0, O = δ, γ, s. (40)

Their gradings to not interfere

grad(d) = 0, deg(O) = 0, grad = agh, pgh, gh, (41)

so it makes sense to compute the local cohomologies H(O|d) in Λ. These are standardly
defined like the set of equivalence classes of local forms O-closed modulo d, Oω + dj = 0,
modulo the local forms that are O-exact modulo d, ω′ = Ow + dm. We highlight that
there is a strict correspondence between O and grad, namely: O = δ ↔ grad = agh,
O = γ ↔ grad = pgh, O = s ↔ grad = gh. These means that whenever O = s the local
BRST cohomology H(s|d) is a vector space simultaneously Z2-graded (according to the
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Grassmann parity) and Z-graded in terms of gh, H(s|d) = ⊕
g∈Z H

g(s|d), where for every
g ∈ Z the space Hg(s|d) is in turn N-graded according to the form degree, Hg(s|d) =⊕D

p=0 H
g,p(s|d). The subspaceHg,p(s|d) is called local BRST cohomology in ghost number

g and form degree p. If O = δ, then the local cohomology of the Koszul–Tate differential
H(δ|d) is a vector space Z2-graded and meanwhile N-graded in terms of agh, H(δ|d) =⊕

j∈N Hj(δ|d), where for every j ∈ N the space Hj(δ|d) is again N-graded according to

deg, Hj(δ|d) =
⊕D

p=0 H
p
j (δ|d). The subspace Hp

j (δ|d) is known as the local cohomology of
the Koszul–Tate differential in antighost number j and form degree p. Finally, if O = γ,
then the local cohomology of the exterior longitudinal differential H(γ|d) is a vector space
Z2-graded, but also N-graded in terms of pgh, H(γ|d) = ⊕

l∈N H
l(γ|d), where for every

l ∈ N the space H l(γ|d) is N-graded according to deg, H l(γ|d) =
⊕D

p=0 H
l,p(γ|d). The

subspace H l,p(γ|d) means the local cohomology of the exterior longitudinal differential in
pure ghost number l and form degree p.

The study of the local BRST cohomology is an essential step in view of constructing
consistent interactions involving a massless tensor field with the mixed symmetry (k, 1)
by means of the deformation of the solution to the master equation [31]–[34]. This defor-
mation method requires the computation of the local BRST cohomology in ghost number
0 and in maximum form degree. From this perspective in what follows we approach the
main cohomological ingredients related to the spaces H(γ) and H(γ|d).

4 H(γ) and H(γ|d)
In the sequel we evaluate the cohomology algebra H(γ) in the algebra of local forms Λ,
defined like the set of equivalence classes of γ-closed local forms modulo γ-exact ones.
Due to the second relation in (34) it is enough to compute H(γ) in the BRST algebra of
local “functions” A, defined as the set of equivalence classes of γ-closed elements from A
modulo γ-exact ones. The computation of the cohomology H(γ) in A or in Λ makes sense
since the operator γ is a true differential on both algebras in this case, with pgh(γ) = +1,
γ2 = 0. We recall that H(γ) defines a supercommutative algebra (Z2-graded), N-graded
in terms of pgh, H(γ) =

⊕
l∈N H

l(γ). Moreover, if we work on Λ, then for every l ∈ N

the space H l(γ) is also N-graded with respect to the form degree

H l(γ) =
D⊕
p=0

H l,p(γ), l ∈ N. (42)

We rely on definitions (15)–(18) and approach the construction gradually, according to
the increasing values of pgh.

From Table 1 we observe that there are no BRST generators with negative pure
ghost numbers, such that in pgh = 0 the cohomology H0(γ) coincides with the kernel
of γ, H0(γ) = (Ker(γ))0 and, due to the additive behavior of pgh with respect to the
multiplication operation on A, it will actually be an algebra. Table 1 helps us to identify
the BRST generators of pure ghost number equal to 0 being given by the antifields Φ∗

A

introduced in (13) and their spacetime derivatives up to a finite order together with the
field tμ1...μk|α and its derivatives up to a finite order. The last definition from (18) implies
that the (polynomial) dependence on [Φ∗

A] produces elements belonging to (Ker(γ))0, and
thus implicitly to H0(γ), where the generic notation f [ϕ] means that f depends on ϕ and
its derivatives up to a finite order. Relation (15) compared with (1) shows that the action
of γ on the field with the mixed symmetry (k, 1) follows from its gauge transformation

7



by replacing the gauge parameters
{(1)

θ ,
(1)
ε
}

respectively with the ghosts
{(1)

C,
(1)
η
}
. Since

the most general gauge-invariant quantities constructed out of the field with the mixed
symmetry (k, 1) and its derivatives are given by the curvature tensor (9) together with its
derivatives, we obtain that the entire dependence on tμ1...μk|α of the elements from H0(γ)
is represented by polynomials (in order to ensure the spacetime locality) in [Kμ1...μk+1|αβ].
In conclusion, H0(γ) computed in the BRST algebra of local “functions” A is precisely
the algebra of invariant polynomials (local “functions” with pgh = 0 that are γ-invariant
and therefore true polynomials in [Φ∗

A] and [Kμ1...μk+1|αβ] since they are not allowed to
depend on the undifferentiated components of the field t)

H0(γ) in A = {algebra of invariant polynomials} ≡ {α([Φ∗
A], [K])}. (43)

Consequently, H0(γ) computed in the algebra of local differential forms Λ will also be
an algebra (where the function multiplication must be replaced with the wedge product
among the forms) allowing for a decomposition of the form (42) with l = 0, where the
elements of each space H0,p(γ) are p-forms whose coefficients are invariant polynomials

H0(γ) =
D⊕
p=0

H0,p(γ), H0,p(γ) � [p]
α = 1

p!
αμ1...μp([Φ

∗
A], [K])dxμ1 ∧ · · · ∧ dxμp . (44)

In the next step, from Table 1 we identify the BRST generators of pure ghost number 1

being expressed by the ghosts
(1)

C and
(1)
η together with their derivatives up to a finite order

and further use definitions (16) and (17) for m = 1. Equivalently, from (24) for m = 1 we
get that the BRST generators of pure ghost number 1 are given by linear combinations

of the ghosts
(1)

C ′ and of their derivatives up to a finite order. From the action of γ on the
latter generators, given by (27) for m = 1, we deduce the most general γ-closed quantities

(so from Ker(γ) at pgh = 1) linear in
(1)

C ′ and their derivatives up to a finite order under
the form{

∂[μ1

(1)

C ′
μ2...μk]||α, ∂ρ1∂[μ1

(1)

C ′
μ2...μk]||α, · · · , ∂ρ1...ρn∂[μ1

(1)

C ′
μ2...μk]||α

}
∈ (Ker(γ))1.

It is more convenient to introduce the notations

∂[μ1

(1)

C ′
μ2...μk]||α ≡

(1)

T μ1...μk||α, (45)

in terms of which the previous relation becomes

{(1)

T μ1...μk||α, ∂ρ1
(1)

T μ1...μk||α, ∂ρ1ρ2
(1)

T μ1...μk||α, · · · , ∂ρ1...ρn
(1)

T μ1...μk||α
}
∈ (Ker(γ))1. (46)

With the help of formula (26) it can be shown that

∂ρ1
(1)

T μ1...μk||α = γ(∂ρ1tμ1...μk|α + (−)k+1∂[μ1tμ2...μkα]|ρ1), (47)

such that all the elements from (46) excepting the first one are γ-exact (or, in other words,
trivial in H(γ))

{
∂ρ1

(1)

T μ1...μk||α, ∂ρ1ρ2
(1)

T μ1...μk||α, · · · , ∂ρ1...ρn
(1)

T μ1...μk||α
}
∈ (Im(γ))1. (48)
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