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Two Lessons on Recurrent Neural Networks 

1. Basic Features and Architectures

Daniela Danciu* 
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Abstract: The main idea of this survey split into two lectures is motivated by the intensive and 

extensive development of the Recurrent Neural Networks (RNNs) research branch of the Artificial 

Intelligence (AI) domain. Due to their cyclic interconnections, RNNs are Neural Networks (NNs) 

which involve dynamics. More specific, RNNs can have very rich spatial and temporal behaviors 

which include fixed-point multiple equilibria, oscillations (self-oscillations, but also forced 

oscillations), time-delays, synchronization and even chaotic behaviors. For these reasons RNNs can 

be used to model complex cognitive functions such as associative memories, but also decision 

making, classification, sorting as well as formalized problem solving tasks. The first lecture presents 

RNNs with a special focus on their main features, the artificial neuron and the most used 

architectures. The second lecture will further discuss the RNNs from the points of view of the 

qualitative behavior (considering the local properties but also the global behavior) and their main 

applications.  

Keywords: Recurrent Neural Networks, Hopfield networks, Cohen-Grossberg networks, KWTA 

neural networks, Cellular Neural Networks, Multiple equilibria 

1. INTRODUCTION

The first “brick” at the foundation of the Artificial Neural 

Networks (ANNs) field but also at the Artificial 

Intelligence (AI) domain can be considered the book by the 

philosopher and psychologist Wiliam James [James 

(1890)]. He stated in his book the first principles of the 

correlated learning and also of the associative memory, 

almost suggesting the idea of the neuron’s activity 

dependence by the sum of input signals [Eberhart and 

Dobbins (1990)]. The next milestone of the field, a half-

century later, is the first model of the artificial neuron 

introduced by McCulloch and Pitts (1943). In 1949, D. O. 

Hebb brought four contributions to the field opening the 

way for another important direction in NNs and AI fields, 

that of learning algorithms. His contributions are as follows 

[Eberhart and Dobbins (1990)]: (a) the idea of connections 

– stating that within a NN “information is stored in the

synapses weights”, (b) the idea of proportional dependence 

of a synaptic weight learning rate by the product of 

activation values of the neurons; (c) the symmetry of the 

synaptic weights (which is not in accordance with the 

reality even if it is used in the Artificial NN field; (d) “the 

cell assembly theory which states [...] that if simultaneous 

activation of a group of weakly connected cells occurs 

repeatedly, these cells tend to coalesce into a more strongly 

connected assembly”. The development of the ANNs field 

has knew further both evolution and stagnation periods 

until the beginning of the ’80s of the XX century, when the 

background for the first implementation of a neural 

network has been established. This turning point in the 

history of the field marked the beginning of a creative 

effervescence in the developing of the NNs field but also 

of the AI domain. 

Among the Artificial Intelligence devices, Neural 

Networks (NNs) are computational architectures that 

represent simplified versions of the biological brain from 

the point of views of structure, signalling, functionalities as 

well as signal processing. Neural networks provide a high 

flexibility in answering to the implementation 

requirements induced by a particular application, i.e. these 

structures can be implemented as hardware devices in 

VLSI technology, or as hybrid hardware-software devices 

or also as software applications embedding a certain level 

of parallelism. 

All these NNs features recommend them for a new 

paradigm in information processing – by means of neural 

computers able to solve both non-formalized and 

formalized problems, as an alternative to the conventional 

von Neumann computers. As it is described by Galushkin 

(2010), neural computers can be either problem-oriented or 

universal ones and can be implemented as hybrid analog-

digital learning machines such that: (i) the 

multidimensional operations on the threshold basis can be 

performed by the “fast” analog part, (ii) the neural 

algorithms for the adjustment of the NNs’ synaptic weights 

can be implemented either in the “fast” analog form or in 

the “low-speed” form of either specialized digital circuits 

or software components. 

The description of a neural network can be discussed at 

both the micro- and macro-levels. At the micro-level – the 
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artificial neuron level – it is important to point out the 

neuron structure and its activation function. At the macro-

level it is important to analyse the neural network topology, 

its qualitative properties (in case they exhibit dynamics) 

and their suitable applications. These key items shape the 

structure of this survey which focuses on the wide class of 

neural networks that embed feedback connections – the 

Recurrent Neural Networks (RNNs). Consequently, 

Section 2 of this paper presents the key features of the 

artificial neuron as well as of the main two topologies of 

the artificial neural networks while Section 3 considers the 

main RNNs structures. In Section 4 the qualitative 

behaviours of RNNs, viewed as nonlinear dynamical 

systems, are briefly discussed – this subject being one of 

the second lecture sections. Some concluding remarks will 

end the paper. 

2. ARTIFICIAL NEURAL NETWORKS. MAIN

CHARACTERISTICS 

The computational power of the biological brain is a result 

of its “architecture”. ANNs – as brain simplified versions 

– can be described as highly parallel structures of

elementary processing units (artificial neurons) exhibiting 

emergent computational capabilities such as learning and 

generalization, but also fault tolerance and slow 

performance degradation due to distributed encoding and 

redundancy of information on a certain area of neurons and 

synapses [Kosko (1992)]. The artificial neurons are 

arranged in successive layers such that pieces of 

information from the previous layers – but also possibly 

from the next layers– are simultaneously processed/filtered 

(parallel computation) by the neurons of a certain layer. 

Such a parallel-sequential processing architecture of a 

neural network ensures the emergence of new 

computational capabilities, i.e. an increased and enriched 

computational power which is not specific to a single 

neuron. Nevertheless, the neuron structure and function are 

also key factors for acquiring these collective properties of 

the whole neural network regardless its type – natural or 

artificial. 

2.1 The Artificial Neuron 

Taking into account the main features of the biological 

neuron, an artificial neuron i has multiple inputs and only 

one output (Fig. 1). One can identify, as in the case of 

natural neuron, three basic regions: 

i) the receiving region: the input signals xj – which

include the outputs of other neurons within the

network � = 1. ������� as well as either an external

stimulus Ii or a bias – are collected and the neuron’s

post-synaptic signal is computed as a weighted sum

of these inputs (pre-processing stage); the synaptic

weights wij are real numbers showing the strength and

the excitatory/inhibitory effect to the ith neuron, i.e. wij

> 0 shows an excitatory effect of the input xj while its

effect will be inhibitory for wij < 0;

ii) the processing region: the post-synaptic signal is

processed via a certain neuron activation function f

and, as a result, an action potential can be released;

iii) the transmission region: the neuron output signal y,

i.e. its action potential, is further transmitted via

synaptic connections to other neurons within the

network but also, possible, to the neuron itself (self-

feedback).

Usually, the output of an artificial neuron is computed as 

� = �	
� = � �
 ����
�

��� � (1)

but also more complex architectures and formulae exist, 

these incorporating self-feedback connections at the 

synapses level or at the activation function level or at the 

output level as well – for more details, the reader is sent to 

the paper by Tsoi and Back (1994) and the references 

therein.  

The activation (transfer) function f has as main role the 

limitation of the domain of variation for the neuron output 

signal to a pre-specified domain, performing at the same 

time a specific operation on the post-synaptic signal r such 

as filtration or selection to enumerate just a few.  

Fig. 1. The basic structure of an artificial neuron. 

The most used neuron activation functions, as being the 

more similar to the natural ones, are: the threshold 

function, piecewise linear functions, the sigmoid function 

and the Gaussian function. 

i) Threshold function – restricts the neuron output

domain to only two values: {0,1} in case of a binary

threshold function or {−1,+1} in case of a bipolar

threshold function. Mathematically, the threshold

function reads as

�	
� = ��, 
 ≥ ��, 
 < � (2)

where for the two aforementioned cases α = 1, p = 0 

and β = 0 or β = −1, respectively – see also Fig. 2 
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ii) Bipolar ramp function – is a bounded, non-

decreasing, piecewise-linear function, with angular

points where its derivative has discontinuities – see

Fig. 3. The bipolar ramp function

�	
� = � 1, 
 ≥ 1
, |
| < 1−1, 
 ≤ −1 (3)

is a globally Lipschitzian function, with the Lipschitz 

constant L = 1, i.e. it verifies 

0 < �	!�! ≤ ", �	0� = 0 (4)

iii) Sigmoidal functions – are bounded, continuous

differentiable, monotonically increasing and globally

Lipschitzian functions which give a nonlinear graded

response within a pre-specified interval, usually

[−1,1] or [0,1]. The sigmoidal function is wide used

for modeling natural processes within different

scientific fields such as biology, chemistry, sociology

etc. There are several examples of sigmoidal

functions – see for instance [Danciu and Răsvan

(2001)]. The logistic function (Fig. 4) is a sigmoid

function with the Lipschitz constant L = 1

�	#
� = 11 + %&'( (5)

Remark that as the parameter λ increases, the shape 

of the sigmoid function approaches the shape of the 

threshold function. 

iv) Gaussian function – is a nonlinear radial function

used in probabilistic neural networks. Considering

the dispersion v2 the Gaussian function reads as

�	
� = %&()*)  (6)

Fig. 2. The threshold function. 

Fig. 3. The bipolar ramp function (a) and its derivative (b). 

Fig. 4. The shape of a sigmoid function. 

Fig. 5. The Gaussian function. 

2.2 The Main Topologies of Artificial Neural Networks 

The NNs topology refers to the neurons number and 

distribution on layers as well as to the layers number and 

distribution within a network, but also to the 

interconnections types and the way the information flows 

through the network. The elementary units of an ANN are 

organized in one or several layers. The neurons within a 

layer are similar regarding two aspects: the input signals 

have the same source and all the neurons have the same 

updating dynamics. Within a network the interconnections 

can be: (a) intra-layer, when the neurons of the same layer 

are interconnected, and (b) inter-layer, when the neurons of 

different layers are interconnected.  

From the point of view of the information “flow” direction 

through a network, two are the basic topologies for the 

wide class of ANN: the feedforward and the feedback 

topologies. 

• The feedforward topology of a NN means that the

information passes the network only in one direction

– from its inputs to its outputs. The Feedforward

Neural Networks (FNNs) have one input layer, one or 

several hidden layers and one output layer. Being 

structures with no cyclic interconnections, the FNNs 
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lack dynamics. In Fig. 6 is an example of a FNN 

having a 3-neurons input layer Ix, one 2-neurons 

hidden layer Hy and a 3-neurons output layer Oz. 

• The feedback topology refers to the existence of

cyclic interconnections, i.e. connections from the

forward layers neurons to the backward layers

neurons as well as self-feedback or intra-layer

connections as it is shown in Fig. 7. Recurrent Neural

Networks are neural networks with feedback

topology, thus these networks are dynamical systems

with complex spatial and temporal behaviors.

Fig. 6. An example of a Feedforward Neural Network with 

one hidden layer. 

Fig. 7. An example of a full-interconnected Recurrent 

Neural Network with one layer. 

In the sequel we shall present the most known and used 

RNNs and we shall discuss their specific topologies and the 

induced qualitative properties. 

3. RECURRENT NEURAL NETWORKS

We restrict ourselves to five architectures for RNNs, those 

who have had a high impact to the technical world. The 

idea of including recurrence in the neural networks 

architecture was suggested in the ’70s papers [Grossberg 

(1988)] of the XX century, but the physicist J. J. Hopfield 

[Hopfield (1982, 1984)] has been the researcher which 

pointed out the role of the feedback connections for 

obtaining some complex desirable behaviors for NNs: “All 

our interesting results arise as consequences of the strong 

back-coupling.” Also, J. J. Hopfield “identified network 

structures and algorithms that could be generalized and that 

had a high degree of robustness. Significantly, he pointed 

out throughout his papers that his ideas could be 

implemented in integrated circuitry, [and] presented his 

networks in a manner that was easy for engineers and 

computer scientists to understand”. He defined the energy 

E of a network and showed “that the algorithm of changing 

Vi (activation values – our remark) [...] makes E decrease 

and that eventually a minimum E is obtained. In other 

words, he proved that the network has stable states.” 

[Eberhart and Dobbins (1990)]. 

Fig. 8. A Bidirectional Associative Memory. (Source: 

Kosko (1992)) 

3.1 Hopfield Neural Networks (HNN) 

Introduced by Hopfield (1982, 1984),HNNs are auto-

associative neural networks with one layer of full 

interconnected neurons (Fig. 7) where the information 

passes between neurons back and forth until an overall 

equilibrium state is attained, this state being also the output 

of the network. The interconnection matrix + = ,�-�. is
symmetric; the original version of the HNN has zero 

entries on the principal diagonal, i.e. all the neurons have 

no self-feedback �-� = 0, / = 1, ������� – this choice being

suggested by some biological facts regarding the low level 

activity of neurons. 

The network dynamics of the continuous-time HNN is 

described by the system of ordinary differential equations 

�0- = −1-�- − 
 �-��-
�

��2 + 3- , / = 1, �������
�- = �-	�-� (7)

where xi is the state of the neuron, yi is its output, wij , 4 =1. ������� are the synaptic weights from the neurons j to the

neuron i, ai models the passive decay rate of the neuron 

state to the resting state and the activation function f (·) is 

a nonlinear sigmoidal function. 

The feedback connections and the nonlinear activation 

function of the neuron lead to some emergent 

computational capabilities for the HNN, which made it an 

associative memory, or more specific a content 

addressable memory [Hopfield (1982)]. This means that 

HNN can learn some patterns – given in the form of some 

binary vectors. The learning procedure is an off-line 

computation of the synaptic weights, values which remain 

fixed once the “learning process” is finished. Thus, the 
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“memory” patterns become the stable equilibria of the 

nonlinear dynamical system. As a result, if a distorted or 

partial version of a “memory” pattern is presented at the 

network input, then the evolution of the network state will 

be such that its output will eventually have the same form 

as that “memory” pattern. From the point of view of 

dynamical systems this means that, given an initial 

condition within the attraction basin of a stable equilibrium 

having as coordinates the stored pattern, the state trajectory 

will eventually converge to that equilibrium point 

[Hopfield (1984)]. 

As limitations of the HNN wemention: (a) the number of 

stored patterns is limited by the network capacity to about 

15% of the total number of neurons and (b) in order to 

avoid spurious equilibria, the Hamming distance between 

the “memory” patterns (equilibria) has to be about 50% 

[Hopfield (1982)]. 

3.2 Bidirectional Associative Memory (BAM) 

BAM has been proposed by Kosko (1988) as an extension 

of HNN to the case of two layers NNs with full inter-layers 

and no intra-layer connections – see Fig. 8. As it is 

described in [Kosko (1988, 1992)], due to the bidirectional 

connections, if one denotes W the interconnection matrix 

from the layer Lx to the layer Ly, then the reverse 

connections are described by WT and thus, the overall 

interconnection matrix is symmetric with the form 

+∗ = 6 0 ++7 0 8 (8)

The mathematical model of a discrete-time BAM reads as 

[Kosko (1992)] 

9:;
:<�=>2- = 
 �-�?�@�=�AB

��2 + 3- , / = 1, C
�=>2� = 
 �-�D-@�=- AE

-�2 + F� , 4 = 1, � (9)

where the neuron activation functions are binary threshold 

functions of the form 

D-@�=- A = G1, �=- > I-D-@�=&2- A, �=- = I-0, �=- < I-
 

?�@�=�A = J1, �=� > K�?�@�=&2� A, �=� = K�0, �=� < K�
 

(10)

with Ui, Vj and Ii, Jj arbitrary-valued thresholds and inputs, 

respectively. As a heteroassociative neural network, BAM 

learns the associations between pairs of patterns LMN- , O�PQ-�2,E, N- ∈ S−1,1TE ∈ ℝE×2, O� ∈ S−1,1TB ∈ℝB×2, i.e. the learned pairs of patterns become the

“memory” patterns of the BAM. One says that a pair of 

stored patterns 	N, O� is bidirectional stable, i.e. it is a

bidirectional stable equilibrium, if the state trajectories 

starting from any input pairs of patterns within the 

attraction basins of the two vectors N, O will eventually

attain that “memory” pair pattern. When a bidirectional 

equilibrium	N, O� is attained, the same signal will pass

unchanged back and forth between the two layers and the 

output signals vectors of the network will be the same as 

the “memory” vectors [Kosko (1992)]. 

3.3 Cohen-Grossberg Competitive Neural Networks 

(CGNN) 

The compact form of the Cohen-Grossberg neural network 

mathematical model is [Cohen and Grossberg (1983)] 

�0- = 1-	�-� WX-	�-� − 
 Y-�Z�@��AE
��2 [ , / = 1, C, Y-� = Y�- (11)

Grossberg (1988) has showed that taking into 

consideration different forms for the functions ai, bi and di 

one may obtain additive dynamics (“Additive Model 

networks” such as HNN, BAM) as well as multiplicative 

dynamics (“Shunting Model networks”) described by the 

general equations 

�0- = −\-�- + 	] − ^�-� _3- + 
 =̀-�=	�=��=-a=-
E

=�2 b
−  	c + d�-� _F- + 
 e=-f=	�=��=-a=-

E
=�2 b , / = 1, C (12)

where the first term describes the passive decay of the 

neuron activity, the second term refers to the excitatory 

signals (external stimulus Ii and the total excitatory 

feedback from network neurons) while the third term 

considers the inhibitory signals in the same manner. Also, 

Grossberg (1988) has showed that by considering 

appropriate forms of (12) one can obtain the population 

biology models Volterra-Lotka and Gilpin-Ayala, the 

Eigen-Schustermodel formacromolecular evolution, the 

steady state Hartline-Ratliff model of Limulus retina, the 

Hodgkin-Huxley model of the neuron membrane. 

3.4 K-Winner-Takes-All Neural Networks (KWTA) 

From the point of view of its architecture, KWTA neural 

network is a special type of Hopfield network where the 

neurons activation functions are nonlinear sigmoidal 

functions with high gains, λ. This feature ensures its 

selectivity and order preserving properties in the sense that 

given N constant input signals Z2, … , Zh, a KWTA

network will be able to provide a N-dimensional output 

having its first 1 ≤ i ≤ j − 1 elements with positive

values and ordered according to the K-highest input 

signals. To be more specific, if we consider the input 

signals Z2, … , Zh in a σ-ordered sequence Zk	2� > Zk	l� >⋯ > Zk	h�, then the output signal vector � will be such that�k	-� > 0, / = 1, i, �k	-� < 0, / = i + 1, j, i.e. the binary

sequence {1, … ,1nopq ,−1, … , −1nrrorrph&q } will select the

corresponding equilibrium corner of the closed hypercube st = S−1, 1T – the state space for the KWTA networks
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dynamics. In this way the steady state output variables ��-
are well delimited from 0 and the network ensures some 

robustness with respect to the parameter uncertainty 

[Calvert and Marinov (2000), Danciu and Răsvan (2009)]. 

KWTA networks are useful in various applications 

requiring high processing rates, and can be implemented as 

subsystems in complex systems for decision making 

applications, list sorting, digital processing [Brockett 

(1991)]. 

3.5 Cellular Neural Networks (CNNs) 

Introduced by L.O. Chua and his collaborators [Chua and 

Yang (1988b), Chua and Yang (1988a)] as “a novel class 

of information-processing systems” of type ”large-scale 

nonlinear analog circuits that process signals in real time”, 

CNNs are ANN of identical cells regularly distributed in n-

dimensional layers. The “cell” is the elementary processing 

unit of a CNN and can be described as a nonlinear 

dynamical system having several kinds of inputs, one 

output and only local interconnections within a r–radius 

neighborhood. An important characteristic of CNNs is that 

these local interconnections, being identical for at least all 

the inner cells of the network, can be casted into some so-

called “cloning templates”. Consequently, the cell-based 

neural networks are desirable for those applications which 

require parallel processing by means of a huge number of 

elementary units [Chua and Roska (1993)]. 

Considering a CNN structured as a two-dimensional array 

of cells arranged on a regular rectangular grid indexed by / = 1, j, 4 = 1, u, the canonical form for the cell

dynamics is [Gilli et al. (2002)] 

�0-�	v� = 
 w-�,=xy @�-� , �=xA�	�=x�	=,x�∈hz	-,��+ 
 w-�,=x{ @|-� , |=xA|=x	=,x�∈hz	-,��+ 
 w-�,=x} @�-� , �=xA	=,x�∈hz	-,�� �=x + 3-�
(13)

where xij is the ijth cell state variable, ukl are the control 

variables from the neighboring cells, Nr(i j) is the r–

neighborhood of the local interactions of the ijth cell, w-�,=xy @�-� , �=xA and w-�,=x} @�-� , �=xA are the output and the

state feedback cloning templates “that in general might be 

space-variant nonlinear functions of the state variables xij 

and xkl”, w-�,=x{ @|-� , |=xA is the control template, Iij is a bias

or an external stimulus and the ~�	ℝ� f (·) is a bipolar

ramp function of type (3). 

The three important features of CNNs – local 

interconnections, cloning templates and different types of 

inputs – lead to a certain flexibility in implementation: they 

can be software emulated or software/hardware 

implemented on a digital basis, but also they can be 

hardware implemented in the VLSI technology.  

The CNNs main applications include image processing 

(feature extraction, noise removal, edge detecting etc.) as 

well as formalized problems solving – the type of problems 

which can be casted in the form of some high-dimensional 

systems of ordinary differential equations (ODEs) 

displaying a certain grade of regularity and similarity thus 

allowing the identification of some “cloning templates”. 

4. QUALITATIVE PROPERTIES OF RNN – AN

OVERVIEW 

A key feature of both natural and artificial neural networks 

is that their proper work is conditioned by two types of 

dynamics: “learning dynamics” and “intrinsic dynamics”. 

The “learning dynamics” refers to the gradual adjustment 

of the synaptic weights during the training process in order 

the NN to learn performing a specific task – in other words, 

this process ensures the transfer of the new information in 

the NN’s Long Term Memory (LTM) [Grossberg (1988)]. 

The “intrinsic dynamics” is induced by the learning process 

and refers to the neural network regarded as a nonlinear 

dynamical system.  

Usually, the two dynamics are not considered together in 

the designing stage when a special attention is devoted to 

only achieving some “useful goals” by the network via 

learning. It is not compulsory that the resulted “intrinsic 

dynamics” should have the desirable properties in order to 

ensure a “good behavior” of the network in achieving the 

designing goals. Hence, these properties have to be 

checked a posteriori on the mathematical model of the 

synthesized NN viewed as a dynamical system [Danciu and 

Răsvan (2007)]. 

In respect to the “intrinsic dynamics”, it is worth 

mentioning that the emergent computational capabilities 

of a RNN can be achieved provided that it has multiple 

equilibria. Thus, when the network attains one of its stable 

equilibria this means that it has solved the task associated 

with that equilibria – such as selection, detection, decision, 

classification etc. In the case of dynamical systems with 

multiple equilibria, the usual local concepts of stability 

(Lyapunov, asymptotic and exponential stability) are not 

sufficient for an adequate description. Accordingly, the 

analysis have to be done within the framework of Stability 

Theory as well as within the framework of the Qualitative 

Theory of Systems with Several Equilibria. 

The second framework allows evaluation of the systems 

global behavior, the specific properties being: dichotomy, 

global asymptotics and the gradient behavior – for 

definitions and the main results, the reader is sent to 

[Reitmann et al. (1992)]. Here we shall give a summary 

description of these concepts [Răsvan (1998), Danciu 

(2011)]: (i) dichotomy – all bounded solutions tend to the 

equilibrium set; (ii) global asymptotics – all solutions tend 

to the equilibrium set; (iii) gradient-like behavior – the set 

of equilibria is stable in the sense of Lyapunov and any 

solution tends asymptotically to some equilibrium point. 

Let us mention that from the aforementioned properties, 

the gradient behavior is the most desirable for a proper 

work of the network in achieving the “designing goals”. 
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As RNNs model the natural brain, there are also other 

behaviors of interest which can be analyzed within the two 

frameworks. We mention here two equally important such 

behaviors: (i) the oscillatory behavior (self-oscillations or 

forced-oscillations) which involves such dynamics as 

rhythmicity as well as synchronization of the oscillatory 

responses with the time-varying external stimuli and (ii) 

the dynamics affected by time-lags in signal transmission 

within the network. 

5. SOME CONCLUSIONS

In this first lecture the main features and architectures of 

the Recurrent Neural Networks are introduced. It was 

shown that due to the feedback interconnections, RNNs are 

dynamical networks with complex evolutions within their 

state spaces and that these evolutions depend on the 

permanent regimes they acquire through the “learning 

process”. 

Thus, this first lecture laid the background to further 

discuss within the second lecture the conditions which 

ensure those qualitative properties which allow RNNs to 

proper fulfill the tasks they are designed for. Further, 

having these “good properties” ensured, one can discusses 

the main applications of RNNs – the types already 

introduced in Section 3 of this first lecture. As usual, some 

concluding remarks will end the second lecture and, thus, 

will end the survey on RNNs. 
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Abstract: Deep learning have gained lately popularity by achieving very good results for 

recognizing objects such as cars, plants, coffee cups in images. Big companies like Facebook, 

Google, Amazon - are already using these methods to identify faces, recognize voice commands 

and even enable self-driving cars. Deep learning is based on classical neural networks and 

represents a method of machine learning and has evolved over the years to become a research field 

on its own. Deep neural networks are based on different models: Stacked Auto Encoder ,Deep 

Belief Networks, Deep Boltzmann Machine ,Convolutional Neural Networks, Recurrent Neural 

Networks. Most deep learning researchers are not programming neural networks directly but, they 

are using software libraries like: TensorFlow, Caffe2, Theano, Torch, etc. Deep learning is a 

central method for developing new applications in medical sector. Medical sector has access to 

vast quantities of patient data and images can be fed in the deep learning neural networks 

algorithms to learn from. In medical image analysis many types of deep architectures have been 

applied .In the field of Convolutional Networks there are several architectures. The most common 

are: LeNet, AlexNet, GoogLeNet, ZfNet, VggNet, ResNet. Today, deep learning networks can 

execute a lot of tasks in medical field, especially medical imaging. These network can solve 

problems like: Classification, Regression and Segmentation but they need a lot of data to train 

deep models and also need powerful hardware to train the deep networks. In this paper are 

discussed briefly the latest methods for medical imaging currently in research: Blood vessel 

detection in ultrasound, Classification of skin cancer close to dermatologist level with deep neural 

networks, Deep CNNs for Diabetic Retinopathy Detection, Deep Learning for large-scale drug 

screening, Deep Learning Commercial Applications. In conclusion, deep learning has a great 

potential impact in changing world.  

Keywords: Deep learning, convolutional neural networks, medical imaging, machine learning, 

medical classification  

 

1. INTRODUCTION 

In the last years, deep learning have gained popularity by 

achieving very good results for recognizing objects such 

as cars, plants, coffee cups in images. Big companies like 

Facebook, Google, Amazon - are already using these 

methods to identify faces, recognize voice commands and 

even enable self-driving cars.  

 
Fig. 1: Evolution of artificial intelligence source: 

www.nvidia.com/deep-learning-ai  

 

Deep learning is a very interesting domain at the present 

time and many researchers are working in the direction of 

developing this domain. It first started as a branch of 

Machine Learning (ML), which is part of Artificial 

Intelligence (AI) domain. 

The term Deep Learning was introduced to the machine 

learning community by Rina Dechter in 1986 and in 2000 

to Artificial Neural Networks by Igor Aizenberg and 

colleagues, in the context of Boolean threshold neurons. 

Industrial applications of deep learning to large-scale 

speech recognition started around 2010. 

Deep Learning works with big data. This means that 

important resources are necessary, especially for training 

a network. A new revitalization of the domain is related to 

the development of games industry, around 2015. The 

advancements of high-tech central processing units 
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