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PREFACE

The purpose of this book is to present the author’s recent contributions in the field
of dynamical systems, and their applications to modeling, control and/or stabiliza-
tion. The book is a presentation of the author’s endeavors, being a result of the effort
to pass beyond. To pass beyond the starting point in a research career — the Ph.D.
thesis — is not an easy task. The author tried this in various ways, stimulated by the
external and career requirements, but acting also in virtue of personal views and prin-
ciples. Written on the basis of the author’s habilitation thesis, this book is suitable
for PhD students as well as for researchers with background and interests in the the-
ory and applications of Control Engineering, Applied Mathematics, Computational
Mathematics and Artificial Intelligence (Al). The book is organized into three dis-
tinct parts. Each part begins with an abstract and an introductory chapter and, at the
same time, represents a research direction pursued by the author through the topics
of the research projects she participated in as a director, principal investigator or a
member, as well as topics of individual research interest.

Part I consists of three chapters. Chapter 1 briefly introduces the framework of the
Qualitative Analysis for Systems with Multiple Equilibria (SME) as well as the class
of Recurrent Neural Networks (RNNs). Chapter 2 gives results regarding conditions
to be fulfilled by RNNs as SME in order to possess the qualitative behavior desirable
for achieving the functional tasks they are designed for — the gradient-like behavior.
The results and applications of Chapter 3 extend the study to the case of RNNs with
multiple nonlinearities and lumped time-delays.

Part II considers an important research direction for the control engineering field:
the absolute stability property for nonlinear dynamical systems. The collaborative
results of this part were motivated by their applications to a challenging control prob-
lem — the Pilot-Induced-Oscillations (P10O) for aircrafts — i.e., the critical or unstable
cases due to the actuators saturation nonlinearities in interaction with the pilot’s sud-
den and unpredictable manoeuvrers. Chapter 4 presents the state-of-the-art for the
absolute stability field and a short introduction with the classification of the PIO
phenomena. Chapter 5 introduces two results for absolute stability of SISO (single
input - single output) and MIMO (multiple input - multiple output) systems with both
sector and slope restricted nonlinearities. Chapter 6 contains a selection of illustrative
examples for the application of the previous introduced results of absolute stability.
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Part III is devoted to the field of Distributed Parameter Systems (DPS). Having a
multi- and interdisciplinary research character, it focuses on the computational mod-
eling and control of Distributed Parameter Control Systems (DPCS). Chapter 7 intro-
duces a well-structured computational procedure based on a “convergent Method of
Lines” combined with certain Al devices in order to model DPS described by hyper-
bolic partial differential equations (hPDEs) with non-standard boundary conditions
(BCs). Chapter 8 extends this procedure to the case of parabolic PDEs (pPDEs). Be-
fore introducing some illustrative applications, in Chapter 9 we consider the bound-
ary stabilization for a system with distributed parameters; the behavior of this closed
loop system will be further investigated in the next chapter via computational mod-
eling. There are multiple applications of the procedure for computational model-
ing and, thus, the behavior evaluation of those DPCS arising from real-world prob-
lems belonging to various areas such as: contact mechanics, oil extraction indus-
try, biotechnology, cogeneration (combined electricity and heat generation), water
hammer phenomenon in hydraulics, cranes with flexible cable (used, for instance,
in transportation, manufacturing, construction, offshore platforms etc.) and so on.
Chapter 10 presents a selection of five such applications of the procedure for DPCS
within the aforementioned areas. From the mathematical point of view, the proposed
procedure is suitable for mixed initial boundary value problems for PDEs with non-
standard boundary conditions. Each such problem has its own specificity induced by
both the PDEs model and the non-standard BCs. Each of the considered applications
is accompanied by simulated experiments, 2D and 3D graphical representations, as
well as results interpretations from both points of view of transient and asymptotic
behavior; furthermore, discussions concerning the computational efficiency of the
procedure on each case are provided.

Since this book has multiple faces, it is not without interest to give to the potential
reader what is unifying these various research directions above mentioned. First, it is
the concept of dynamical system, in the form arising from the ideas of Henri Poincaré
and George David Birkhoff: an evolution along the time, generated (“ignited”) by the
initial conditions. In turn, the initial conditions incorporate the effect of the short du-
ration perturbations on a basic evolution of the system. This point of view belongs
to Aleksandr M. Lyapunov; Rudolph E. Kalman put it explicitly: the initial condi-
tions “integrate” system’s pre-history. Going further, Nikolai G. Cetaev pointed out
that real-world dynamical systems are subject to a quasi-permanent small amplitude
perturbation field. Therefore, stability (in the sense of Lyapunov) becomes crucial,
being (Cetaev dixit) a part of the Nature laws. Since Dynamics is the science of the
real (and effectively observable/measurable) equilibria and motions of the material
systems, these equilibria and motions are observable/measurable provided they are
stable. Otherwise, the aforementioned perturbation field will “obscure”, if not “de-
stroy”, them. This general property of stability should be viewed as completing the
necessary criteria for model validation, criteria which are critical in Physics, Engi-
neering, Biology, “soft” sciences (e.g. Machine learning, Artificial Intelligence) —
disciplines which are found within this book under the methodological “umbrella”
described above.

Craiova, 2021 Daniela Danciu
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ABSTRACT

Dynamical systems with several equilibria occur in such fields of science and tech-
nology as electrical machines, chemical reactions, economics, biology and, last but
not least, neural networks. For systems with several equilibria the usual local con-
cepts of stability are not sufficient for an adequate description. The so-called “global
phase portrait” may contain both stable and unstable equilibria: each of them may
be characterized separately since stability is a local concept dealing with a specific
trajectory. Nevertheless, global concepts are also required for a better system de-
scription and this is particularly true for the case of the neural networks.

The Recurrent Neural Networks (RNNs) may be viewed as interconnections of
simple computing elements whose computational capability is increased by inter-
connection (“emergent collective capacities” — to cite J.J. Hopfield [95]). This is due
to the nonlinear characteristics leading to the existence of several stable equilibria.
The network achieves its computing goal if no self-sustained oscillations are present
and it always achieves some steady-state (equilibrium) among a finite (while large)
number of such states. The contributions presented in this part of the manuscript are
structured in the following chapters.

Chapter 1 introduces the basics for recurrent neural networks as nonlinear sys-
tems with several nonlinearities and/or equilibria and the main “tools” for investigat-
ing their qualitative behavior. After a short introduction which presents the general
context emphasizing the importance of the studies presented in this part, the chapter
continues with the main concepts and results of the Qualitative Theory of Systems
with Several Equilibria (QTSSE) and the description of the most used and studied
recurrent neural networks which are also studied in this part of the manuscript. Some
concluding remarks stress the desirable behaviors for RNNs from the point of view
of the theory of systems with several equilibria.

Chapter 2 presents some contributions concerning the qualitative behaviors of
RNNs as dynamical systems with several equilibria and nonlinearities. In the first
section the static and dynamic analysis of KWTA networks is performed within the
framework of QTSSE, and conditions for the gradient-like behavior of the KWTA
neural networks are given. In the second section we consider a general model for
RNNs with sector and slope restricted nonlinearities within the framework of the
Absolute stability theory; the results are then particularized to the case of analog
Hopfied circuits and further discussed for other RNNs.
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Chapter 3 takes into consideration the dynamics of RNNs with multiple nonlin-
earities and/or several equilibria which are affected by time-delays due to the signal
propagation at the synapses level or to the reacting delays in the case of the artificial
neural networks. Due to their undesirable effects on the systems dynamics, such as
oscillations or instabilities, beginning with the years of 90-ies of the 20th century,
these phenomena have been included in the NNs’ mathematical models and various
qualitative behavior studies have been considered. Time-delay systems (TDS) are
modeled by functional differential equations and the approaches and tools we have
used for their qualitative analysis include: the Lyapunov-Krasovskii functional, the
frequency domain method by V.M. Popov as well as the comparison principles that
lead to differential and integral inequalities. This chapter consists of the following
contributions: the global asymptotic stability for time-delay Hopfield networks (a
Lyapunov-type approach), synchronization problems for time-delay RNNs (by using
the both Lyapunov and Popov approaches), robust exponential stability for time-
delay CNNs, the Popov-like results using comparison for RNNs as systems with
multiple equilibria and time-delays, an extension of the LaSalle-like theory for sys-
tems with multiple equilibria and time-delays.

The results presented in Part I were introduced in the following publications:

1. D. Danciu (2011). Bio-inspired Systems. Several Equilibria. Qualitative Behavior,
Proc. 11th Int. Work-Conference on Artificial Neural Networks, IWANN’2011,
Lect. Notes on Comp. Sci., Springer, vol. 6692, pp. 573-580.

2. D. Danciu, V. Résvan (2011). Systems with Slope Restricted Nonlinearities and
Neural Networks Dynamics, Proc. 11th Int. Work-Conference on Artificial Neural
Networks, IWANN’2011, Lect. Notes Comp., Springer, vol. 6692, pp. 565-572.

3. D. Danciu (2010). Retele neuronale. Stabilitate, Sincronizare, Intarzieri, Seria
Control Engineering, Universitaria, Craiova, ISBN 973-742-234-1.

4. D. Danciu, C. Ionete (2009). Synchronization problem for time-delay recurrent
neural networks, IFAC Proceedings Volumes, Vol. 42, No. 14, pp 426—430.

5. D. Danciu, V. Rdsvan (2007). Dynamics of Neural Networks -Some Qualitative
Properties. Proc. Int. Work Conference on Artificial Neural Networks IWANN’2007,
Lect. Notes on Comp. Sci., Springer, vol. 4507, pp. 8-15.

6. D. Danciu (2006). Sisteme cu mai multe echilibre. Aplicatii la retele neurale, Seria
Control Engineering, Universitaria, Craiova, ISBN: 978-973-742-555-3.

7. D. Danciu, V. Rdsvan. Stability Results for Cellular Neural Networks with Time
Delays. (2005). Proc. Int. Work Conference on Artificial Neural Networks IWANN’2005,
Lect. Notes on Comp. Sci., Springer, vol. 3512, pp. 366-373.

8. V. Rasvan, D. Danciu (2004). Neural networks - global behavior versus delay,
Scientific Bulletin of “Politehnica” University of Timisoara, Transactions on Au-
tomatic Control and Computer Science, vol. 49(63), no. 2, pp. 11-14.

9. D. Danciu (2002). Qualitative Behaviour of the Time-Delay Hopfield-Type Neural
Network with Time Varying Stimulus, Annals of the University of Craiova, Series:
Electrical Engineering, vol. 26, No. 1, pp. 72-82.



CHAPTER 1

SYSTEMS WITH SEVERAL EQUILIBRIA
AND THE CLASS OF DYNAMICAL NEURAL NETWORKS

1.1 Introduction. State of the art

Belonging to the Artificial Intelligence (Al) domain, the Neural Networks (NNs) are
structures that possess “emergent computational capabilities” [94]. More precisely,
NN consist of interconnected simple computational devices (the artificial neuron)
to which interconnections confer increased computational power — property which
cannot be inferred from the properties of an individual element. There are two types
of neural networks: 1) Feedforward Networks implement mappings from the input
pattern space to the output space and do not display any dynamics, 2) Recurrent Neu-
ral Networks (RNNs) have, due to their cyclic interconnections and to the neurons’
nonlinear activation functions, a very rich dynamical behavior including stable and
unstable fixed points, limit cycles and even a chaotic behavior.

The mathematical models for RNNs arise either from modeling various biologi-
cal systems or from designing artificial neural devices for solving certain tasks. In
the second case, the structure of such dynamical system is induced by the “learning
process” that establishes the network synaptic weights. This first stage, which gives
the mathematical model for a RNN, aims at the “global pattern formation” without
considering the system’s qualitative properties such as stability and a “good” global
behavior. Thus, this a posteriori induced dynamics may not have the required prop-
erties that, on the other hand, ensure a proper operation. Therefore these properties
have to be checked separately after the design stage.

The most useful and investigated behaviors of the RNNs (Hopfield, CNNs, as-
sociative memories, Cohen-Grossberg, KWTA networks) are those concerning the
fixed points dynamics. From the dynamical point of view, a specific feature of RNNs
is that their state space consists of multiple equilibria. This characteristic grants to
the neural networks their computational and problem solving capabilities. On the
other hand, for systems with multiple equilibria (SME), the usual local concepts of
stability (Lyapunov, asymptotic, exponential) are important but not sufficient for an
adequate description. We have to take also into consideration those properties which
describe the global behavior of such systems. Consequently, for RNNs with multiple
nonlinearities and equilibria, the analysis has to be done within the both frameworks
of Stability theory and Qualitative theory of systems with several equilibria. The re-
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sults of such studies give conditions to be fulfilled by the network parameters in order
the system to have the desirable dynamical properties and, these conditions have to
be checked after the functional design of the neural network structure.

1.2 Systems with several equilibria. The theoretical background:
notions and basic results

The Qualitative Theory of Systems with Several Equilibria starts from the paper
of Moser [128] and has been developed in a comprehensive way by Yakubovich,
Leonov and their co-workers [71, 117]. Interesting references in the field are also
the papers of V.M.Popov [142, 143] and, in the context of integral and integro-
differential equations, the publications of Corduneanu [33], Halanay [81], Nohel and
Shea [131]. We shall recall in the sequel the basic concepts of the framework of the
QTSSE, as introduced in [120].
Consider the system

i = f(t,) (1.1)

with f: Ry X R" — R" continuous and locally Lipschitz continuous in the second
argument.

Definition 1.1. a) Any constant solution of (1.1) is called equilibrium. The set of
equilibria & is called stationary set. b) A solution of (1.1) is called convergent
if it approaches asymptotically some equilibrium: lim; ,.x(f) = ¢ € & ¢) A solu-
tion is called quasi-convergent if it approaches asymptotically the stationary set &
limy e d(x(t),&) = 0, where d(-, &) denotes the distance from a point to the set &

Definition 1.2. The system (1.1) is called: a) monostable, if every bounded solution
is convergent; b) quasi-monostable, if every bounded solution is quasi-convergent; c)
gradient-like, if every solution is convergent; d) quasi-gradient-like, if every solution
is quasi-convergent.

Since there are also other terms designating the above qualitative behaviors [157]
in the rest of this part of the manuscript we shall use the following notions:

a) dichotomy — all bounded solutions tend to the equilibrium set

b) global asymptotics — all solutions tend to the equilibrium set

c) gradient-like behavior — the set of equilibria is stable in the sense of Lyapunov
and any solution tends asymptotically to some equilibrium point.

The Lyapunov-like results of [120] for systems with multiple equilibria are:

Lemma 1.1. Consider the nonlinear system
i=f(x), xeR" (1.2)

and its equilibria set & = {c € R" : f(c) = 0}. Suppose there exists V : R" — R
continuous with the following properties: i) V*(t) =V (x(t)) is non-increasing along
the solutions of (1.2); ii) if V (x(t)) = const. for some bounded on R solution of (1.2),
then x(t) = c. Then the system (1.2) is dichotomic.
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Lemma 1.2. If the assumptions of Lemma 1.1 hold and either lim .,V (x) = oo
or all solutions of the system are bounded, then system (1.2) has global asymptotics
i.e. each solution approaches asymptotically (for t — o) the stationary set &.

Lemma 1.3. If the assumptions of Lemma 1.2 hold and the set & is discrete (i.e. it
consists of isolated equilibria only) then the system (1.2) is gradient-like (i.e. each
solution approaches asymptotically some equilibrium that is lim,_,. x(t,x9) = ¢ € &).

Remark 1.1. (Moser [128]) Consider the rather general nonlinear autonomous system
i=—f(x), xeR" (1.3)

where f(x) = gradG(x) and G : R" + R is such that: i)lim,_,..G(x) = +eo and
ii) the number of its critical points is finite. Then any solution of (1.3) approaches
asymptotically one of the equilibria (which is also a critical point of G — where its
gradient, i.e. f vanishes) and thus the system’s behavior is gradient-like.

Considering this framework for qualitative analysis of systems with multiple equi-
libria, the next chapters of Part I will study some prototype neural networks belong-
ing to the class of dynamical neural networks with several equilibria.

1.3 Recurrent neural networks as nonlinear dynamical systems with
several nonlinearities

We shall present now the mathematical models and basic features of those RNNs that
will be further analyzed from the point of view of their qualitative properties.

1.3.1 Hopfield neural networks (HNN)

Introduced by J.J. Hopfield in 1982 [94], the Hopfield neural network is an one layer
of fully interconnected artificial neurons. The most used mathematical model within
the literature for the HNN reads as

n

Xi = —ajxj+ Zwijyj+1i ,i=1n
j=1
yi = fi(xi)

where x; is the neuron state, y; is its output, /; is the constant external stimulus or a
bias, a; > 0 is the rate of the passive decay of the neuron’s membrane potential x; to
the resting state, w;; € R are the weights of the synaptic interconnections between
the i neuron and the other neurons within the network where the positive values
indicate excitatory connections while the negative ones show inhibitory effects for
the current neuron i, n is the number of the neurons within the network.

(1.4)
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The neuron’s activation function is a sigmoid function — a nonlinear, continuous,
bounded, monotonically nondecreasing and globally Lipschitzian function, i.e. it ver-

ifies
0< Jlx) = f(x2) <L (1.5)
X| — X2
thus, satisfying a sector condition of the form
OSESLJ(O)ZO (1.6)
X

with L > 0 the Lipschitz constant.

Hopfield neural networks can be used as classifiers, optimizers as well as asso-
ciative memories. The network functioning supposes the simultaneous application of
the input pattern to the neurons. The neurons outputs will asynchronously and ran-
domly activate the network neurons until a global steady state will be attained which
will finally give the network output pattern y = [y; ... y,]|’.

1.3.2 The competitive Cohen—Grossberg neural networks

The competitive neural networks, introduced by Cohen and Grossberg in 1983 [31],
models the biological visual system. From the topological point of view, these net-
works are auto-associative, based on lateral inhibitory connections ¢;; <0, i # j and
a single excitatory connection c;; > 0. The dynamics of the Cohen-Grossberg model
is described by the equations

Xi = ai(x;) [ Zc,/ ] ,i=1,n (L.7)

with ¢;; = ¢;; (the symmetry condition).

If the functions a;(x;) are constant and b;(x;) are linear, then (1.7) becomes an
auto-associative model with an additive activation dynamics, as the Hopfield neu-
ral network is. If, on the other hand, the functions a;(x;) are linear and b;(x;) are
nonlinear, then the activation dynamics is multiplicative described by [31]

n
Ji+ Y Fjgixj)| .i=Tn

j=1j#i

(1.8)
where the first term describes the passive decay of the activity x; with the rate A; > 0,
the second term accounts for the excitatory effect of the external stimulus /; and
of the i™ neuron self-feedback y; = f;(x;), the third term refers to the inhibitory
effects of the external stimulus J; and of the outputs-feedback y; = g;(x;) from the all
other network neurons. It is shown in [77, 78] that in the multiplicative competitive
networks each neural activity x; is restricted to a finite interval [-D; 'E;, C;'B; |

for all + > 0, i = 1,n and that through an appropriate design, these networks can

X = —Aix;+ (B,' — Cixi)[l,- +fj(x,')] (D iXi +E






