Annals of the University of Craiova Mathematics and Computer Science Series

Vol. XLV Issue 2, December 2018

Editorial Board

Viorel Barbu, Romanian Academy, Romania
Dumitru Buşneag, University of Craiova, Romania
Philippe G. Ciarlet, French Academy of Sciences, France
Nicolae Constantinescu, University of Craiova, Romania
Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain
Gioia Failla, Mediterranea University of Reggio Calabria, Italy
Roberta Filippucci, University of Perugia, Italy
George Georgescu, University of Bucharest, Romania
Olivier Goubet, Université de Picardie Jules Verne, France
Ion Iancu, University of Craiova, Romania
Marius Iosifescu, Romanian Academy, Romania
Giovanni Molica Bisci, Mediterranea University of Reggio Calabria, Italy
Sorin Micu, University of Craiova, Romania
Gheorghe Moroşanu, Central European University Budapest, Hungary
Constantin Năstăsescu, Romanian Academy, Romania
Constantin P. Niculescu, University of Craiova, Romania
Patrizia Pucci, University of Perugia, Italy
Vicenţiu Rădulescu, University of Craiova, Romania
Dušan Repovš, University of Ljubljana, Slovenia
Ionel Rovenţa, University of Craiova, Romania
Sergiu Rudeanu, University of Bucharest, Romania
Mircea Sofonea, Université de Perpignan, France
Enzo Vitillaro, University of Perugia, Italy
Antonio Vitolo, University of Salerno, Italy
Michel Willem, Université Catolique de Louvain, Belgium
Tudor Zamfirescu, Universitat Dortmund, Germany
Enrique Zuazua, Basque Center for Applied Mathematics, Spain

Managing Editor

Mihaela Sterpu, University of Craiova, Romania

Website Editor

Mihai Gabroveanu, University of Craiova, Romania

Information for authors. The journal is publishing all papers using electronic production methods and therefore needs to receive the electronic files of your article. These files can be submitted preferably by online submission system:
http://inf.ucv.ro/~ami/index.php/ami/about/submissions by e-mail at office.annals@inf.ucv.ro or by mail on the address:

Analele Universităţii din Craiova, Seria Matematică-Informatică
A. I. Cuza 13

Craiova, 200585, Romania
Web: http://inf.ucv.ro/~ami/
The submitted paper should contain original work which was not previously published, is not under review at another journal or conference and does not significantly overlap with other previous papers of the authors. Each paper will be reviewed by independent reviewers. The acceptance of the papers will be based on their scientific merit. Upon acceptance, the papers will be published both in hard copy and on the Web page of the journal, in the first available volume.

The journal is abstracted/indexed/reviewed by ESCI, Mathematical Reviews, Zentralblatt MATH, SCOPUS. This journal is also included in many digital directories of open resources in mathematics and computer science as Index Copernicus, Open J-Gate, AMS Digital Mathematics Registry, Directory of Open Access Journals, CENTRAL EUROPEAN UNIVERSITY - Catalogue, etc.

Volume Editors: Vicenţiu Rădulescu, Mihaela Sterpu
Layout Editor: Mihai Gabroveanu
ISSN 1223-6934
Online ISSN 2246-9958

Printed in Romania: Editura Universitaria, Craiova, 2018.
http://www.editurauniversitaria.ro

A new generalization of semiregular rings

Tayyebeh Amouzegar

Abstract

A ring R is called ν-semiregular if for every semisimple principal right ideal $a R$ of R, there exists $e^{2}=e \in a R$ such that $(1-e) a \in J(R)$. The class of right ν-semiregular rings contains all semiregular rings. Some properties of these rings are studied and some results about semiregular rings are extended.

2010 Mathematics Subject Classification. Primary 16D99; Secondary 16E50.
Key words and phrases. semiregular ring, ν-semiregular ring, semisimple right ideal, principal right ideal.

1. Introduction

Semiregular rings were introduced by Nicholson in 1976. These rings constitute the class of rings that posses beautiful homological and non homological properties. Following [3], a ring R is called a semiregular ring if for each $a \in R$, there exists $e^{2}=$ $e \in a R$ such that $(1-e) a \in J(R)$. Semiregular rings and their generalizations have been studied by many authors (see $[1,2,5,6,7]$). In this note, we define ν-semiregular rings, as a generalization of semiregular rings. A ring R is called ν-semiregular if for every semisimple principal right ideal $a R$ of R, there exists $e^{2}=e \in a R$ such that $(1-e) a \in J(R)$. Clearly, any semiregular ring is ν-semiregular but ν-semiregular rings need not be semiregular (see Example 4.1). In this paper our aim is to generalize some corresponding known results on semiregular rings.

In Section 2, we introduce the concept of the θ equivalence relation on the set of right ideals of a ring. We say right ideals I, I^{\prime} of R are θ equivalent, $I \theta I^{\prime}$, if and only if $\frac{I+I^{\prime}}{I} \subseteq \frac{J(R)+I}{I}$ and $\frac{I+I^{\prime}}{I^{\prime}} \subseteq \frac{J(R)+I^{\prime}}{I^{\prime}}$. We investigate some basic properties of the θ relation.

In Section 3, we use the θ relation to give a new characterization of semiregular rings.

In Section 4, a characterization of ν-semiregular rings is given. We examine when direct sum of ν-semiregular rings is ν-semiregular. We give some sufficient conditions under which a ν-semiregular ring is semiregular.

Throughout this paper R will denote an associative ring with identity, M a unitary right R-module. We will use the notation $N \ll M$ to indicate that N is small in M (i.e. $\forall L \lesseqgtr M, L+N \neq M$).

2. The θ relation

Definition 2.1. Any right ideals I, I^{\prime} of R are θ equivalent, $I \theta I^{\prime}$, if and only if $\frac{I+I^{\prime}}{I} \subseteq \frac{J(R)+I}{I}$ and $\frac{I+I^{\prime}}{I^{\prime}} \subseteq \frac{J(R)+I^{\prime}}{I^{\prime}}$.
Lemma 2.1. θ is an equivalence relation.
Proof. It is clear that the reflexive and symmetric properties satisfy. For transitivity, suppose $A \theta B$ and $B \theta C$. So

$$
\begin{aligned}
& \frac{A+B}{A} \subseteq \frac{J(R)+A}{A} \quad \text { and } \quad \frac{A+B}{B} \subseteq \frac{J(R)+B}{B} \\
& \frac{B+C}{B} \subseteq \frac{J(R)+B}{B} \quad \text { and } \quad \frac{B+C}{C} \subseteq \frac{J(R)+C}{C}
\end{aligned}
$$

So

$$
\begin{aligned}
& A+B \subseteq J(R)+A \text { and } A+B \subseteq J(R)+B \\
& B+C \subseteq J(R)+B \text { and } B+C \subseteq J(R)+C
\end{aligned}
$$

It is easy to see that $A+C \subseteq J(R)+A$ and $A+C \subseteq J(R)+C$. Hence $A \theta C$.
Note that the zero ideal is θ equivalent to any right ideal contained in $J(R)$. Also, if $R=\mathbb{Z}$ then $m \mathbb{Z} \theta n \mathbb{Z}$ if and only if m and n are divisible by the same primes.
Theorem 2.2. Let A and B be right ideals of R. The following are equivalent:
(1) $A \theta B$.
(2) $\frac{A+B}{A} \ll \frac{R}{A}$ and $\frac{A+B}{B} \ll \frac{R}{B}$.
(3) For every right ideal I of R such that $A+B+I=R$ then $A+I=M$ and $B+I=R$.
(4) If $H \leq R$ with $A+H=R$ then $B+H=R$, and if $K \leq R$ with $B+K=R$ then $A+K=R$.

Proof. (1) \Leftrightarrow (2) It is clear.
$(2) \Rightarrow(3)$ Let $I \leq R$ such that $A+B+I=R$. Then

$$
\frac{A+B}{B}+\frac{B+I}{B}=\frac{R}{B} \Rightarrow \frac{B+I}{B}=\frac{R}{B} \Rightarrow B+I=R .
$$

Similarly, $A+I=R$.
(3) \Leftrightarrow (4) Let $H \leq R$ such that $A+H=R$. Then $A+H+B=M$. By (3), $B+H=R$. Let $K \leq R$ such that $B+K=R$. Then $A+B+K=R$. By (3), $A+K=R$. Conversely, suppose that $A+(B+I)=R$. So $B+(B+I)=R$. Thus $B+I=R$. Similarly, $A+I=R$.
(3) \Rightarrow (2) Let $\frac{X}{B} \leq \frac{R}{B}$ such that $\frac{A+B}{B}+\frac{X}{B}=\frac{R}{B}$. Then $A+B+X=R$. Hence $B+X=X=R$ since $B \subseteq X$. Thus $\frac{A+B}{B} \ll \frac{R}{B}$. Similarly, $\frac{A+B}{A} \ll \frac{R}{A}$.
Corollary 2.3. Let $A, B \leq R$ such that $A \subseteq B+I$ and $B \subseteq A+I^{\prime}$, where $I, I^{\prime} \ll R$. Then $A \theta B$.
Proof. Let $A+B+H=R$, for some $H \leq R$. Then $(B+I)+B+H=R$. So $B+I+H=R$. Thus $B+H=R$. Similarly, $A+H=R$.

Note that there are rings R with $H, A, B \leq R$ such that $R=A+H=B+H$, but A is not θ related to B. For example, take $R=\mathbb{Z}, H=3 \mathbb{Z}, A=2 \mathbb{Z}$ and $B=5 \mathbb{Z}$.

Proposition 2.4. Let $A_{1}, A_{2}, B_{1}, B_{2}$ be right ideals of R such that $A_{1} \theta B_{1}$ and $A_{2} \theta B_{2}$. Then $\left(A_{1}+A_{2}\right) \theta\left(B_{1}+B_{2}\right)$ and $\left(A_{1}+Y_{2}\right) \theta\left(B_{1}+A_{2}\right)$.

Proof. Let $H \leq R$ such that $A_{1}+A_{2}+B_{1}+B_{2}+H=R$. Then $A_{2}+B_{1}+B_{2}+H=R$ and $A_{1}+A_{2}+B_{2}+H=R$, since $A_{1} \theta B_{1}$. Moreover, $B_{1}+B_{2}+H=R$ and $A_{1}+A_{2}+H=R$, because $A_{2} \theta B_{2}$. By Theorem $2.2,\left(A_{1}+A_{2}\right) \theta\left(B_{1}+B_{2}\right)$. From Lemma 2.1, we have $\left(A_{1}+Y_{2}\right) \theta\left(B_{1}+A_{2}\right)$.

Theorem 2.5. Let A, B be right ideals of R such that $A \theta B$. Then
(1) $A \ll R$ if and only if $B \ll R$.
(2) If A is a direct summand of R and B a principal right ideal of R, then A is also principal.
(3) A has a (weak) supplement C in R if and only if C is a (weak) supplement for B.

Proof. (1) (\Rightarrow) Suppose that $A \ll R$. Let $H \leq R$ such that $B+H=M$. Then $A+B+H=R$. By Theorem 2.2, $A+H=R$. Since $A \ll R, H=R$. Hence $B \ll R$.
(\Leftarrow) It is clear because θ is symmetric by Lemma 2.1.
(2) Assume that $R=A \oplus A^{\prime}$ for some $A^{\prime} \leq R$. By Theorem $2.2, R=B+A^{\prime}$. Since $\frac{B+A^{\prime}}{A^{\prime}}=\frac{R}{A^{\prime}} \cong A, A$ is principal.
(3) Suppose that C is a supplement for A. Then $R=A+C=A+B+C$. By Theorem 2.2, $B+C=R$. Assume that $H \subseteq C$ and $B+H=R$. Then $A+B+H=R$. By Theorem 2.2, $A+H=R$. By the minimality of $C, H=C$. Hence C is a supplement for B. The converse is true because θ is symmetric (Lemma 2.1).

Now suppose that C is a weak supplement for A. Then $A+C=R$ and $A \cap C \ll R$. By Theorem 2.2, $B+C=R$. Let us to show that $B \cap C \ll R$. Let $H \leq R$ such that $B \cap C+H=R$. Since $B \cap C \subseteq B, B+H=R$ and $C+H=R$. By Theorem 2.2, $A+H=R$. Since $B \cap C \subseteq C, C=C \cap M=(B \cap C)+(C \cap H)$. Then

$$
R=B+C=B+B \cap C+C \cap H=B+C \cap H
$$

Hence $A+B+C \cap H=R$. By Theorem 2.2, $A+C \cap H=R$. Hence $H=H \cap R=$ $H \cap(C \cap H+A)=(C \cap H)+A \cap H$. Thus $R=C+H=(B \cap C)+(C \cap H)+(A \cap H) \subseteq$ $C+A \cap H \subseteq R$. So $R=C+(A \cap H)$ and hence $A=A \cap R=A \cap((A \cap H)+C)=$ $A \cap H+A \cap C$. Since $A \cap C \ll R, R=A+H=A \cap C+A \cap H+H=A \cap H+H=H$. Therefore $B \cap C \ll R$. The converse holds by the symmetry of the θ relation.

Proposition 2.6. Let $R=R_{1} \oplus R_{2}$ and $A, B \leq R_{1}$. Then $A \theta B$ in R if and only if $A \theta B$ in R_{1}.
Proof. (\Rightarrow) Let $A \theta B$ in R and $A+B+I=R_{1}$ for some right ideal I of R. We want to show $A+I=R_{1}$ and $B+I=R_{1}$. Since $A \theta B$ in $R, R=R_{1} \oplus R_{2}=A+B+I+R_{2}$ implies $A+I+R_{2}=R$ and $B+I+R_{2}=R$. So $A+I=R_{1}$ and $B+I=R_{1}$. From Theorem 2.2, we get $A \theta B$ in R_{1}.
(\Leftarrow) Let $A \theta B$ in R_{1}. Then $\frac{A+B}{A} \subseteq \frac{J\left(R_{1}\right)+A}{A}$ implies $\frac{A+B}{A} \subseteq \frac{J(R)+A}{A}$. Similarly, $\frac{A+B}{B} \subseteq \frac{J(R)+A}{B}$.

3. Semiregular rings

Recall that an element $a \in R$ is von Neumann regular if $a \in a R a$. A ring R is called von Neumann regular if, for any $a \in R, a$ is von Neumann regular.

Lemma 3.1. The following conditions are equivalent for an element a of a ring R :
(1) There exists $e^{2}=e \in a R$ such that $(1-e) a \in J(R)$.
(2) There exists $e^{2}=e \in R a$ such that $a(1-e) \in J(R)$.
(3) There exists a von Neumann regular element $b \in R$ with $a-b \in J(R)$.
(4) There exist two right ideals A and B of R such that $a R=A \oplus B$, where A is a direct summand of R and B is small in R.

Proof. By [3, Lemma 2.1].
Let K and N be submodules of an R-module M. K is called a supplement of N in M if $M=K+N$ and K is minimal with respect to this property, or equivalently, $M=K+N$ and $K \cap N \ll K[4]$.

Lemma 3.2. A ring R is semiregular if and only if every principal right ideal I of R has a supplement which is a direct summand.

Proof. Since R is a semiregular ring, for all $a \in R, R$ has a decomposition $R=A \oplus B$ with $A \subseteq a R$ and $B \cap a R \ll R$. Thus $R=a R+B$ and so B is a supplement of $a R$ which is a summand of R. Conversely, let $R=a R+B, a R \cap B \ll B$ and B is a direct summand of R. Hence there exists $A \subseteq a R$ with $R=A \oplus B$ and so R is semiregular.

Theorem 3.3. Let R be a ring. The following are equivalent:
(1) R is semiregular.
(2) For every principal right ideal I of R, there exists an idempotent $e^{2}=e \in I$ such that IAeR.
(3) For every principal left ideal I of R, there exists an idempotent $e^{2}=e \in I$ such that I θ Re.
(4) Every principal right ideal I of R has a supplement which is a direct summand.
(5) Every principal left ideal I of R has a supplement which is a direct summand.

Proof. (1) \Rightarrow (2) Let $a \in R$. From (1), there exists an idempotent $e^{2}=e \in a R$ such that $(1-e) a \in J(R)$. Since $e R \subseteq a R, \frac{a R+e R}{a R} \subseteq \frac{J(R)+a R}{a R}$. By modularity, $a R=e R \oplus((1-e) R \cap a R)$. Hence $\frac{a R+e R}{e R}=\frac{e R \oplus((1-e) R \cap a R)}{e R} \subseteq \frac{e R+J(R)}{e R}$. Therefore $a R \theta e R$.
(2) \Rightarrow (4) Let $a \in R$. By (2), there exists an idempotent $e^{2}=e \in R$ such that $a R \theta e R$. Since $R=e R \oplus(1-e) R,(1-e) R$ is a supplement of $e R$. Hence $(1-e) R$ is a supplement of $a R$ in R by Theorem 2.5.
(4) $\Leftrightarrow(1)$ By Lemma 3.2.
$(1) \Rightarrow(3) \Rightarrow(5) \Rightarrow(1)$ It can be proved similarly.

Theorem 3.4. Let R be a ring. Then R is semiregular if and only if for each principal right ideal I of R, there exists a direct summand A and a small right ideal H of R such that $I+H=A+H=I+A$.

Proof. Assume that R is semiregular. Then there exists a direct summand A of R such that $I \theta A$ by Theorem 3.3. By Proposition 2.4, $I \theta(I+A)$ and $A \theta(I+A)$. Note that $R=A \oplus A^{\prime}$ for some $A^{\prime} \leq R$. By Theorem $2.5, A^{\prime}$ is a supplement for A, I and $I+A$. Hence $I+H=A+H=I+A$, where $H=(I+A) \cap A^{\prime} \ll R$. The converse follows from Corollary 2.3.

4. ν-Semiregular ring

We say that a ring R is ν-semiregular if for every semisimple principal right ideal $a R$ of R there exists $e^{2}=e \in R$ such that $(1-e) a \in J(R)$.

Clearly semiregular rings are ν-semiregular but the converse need not be true as we see in the following example.

Example 4.1. Let \mathbb{Z} be the ring of all integers. Since $\operatorname{Soc}(\mathbb{Z})=0, \mathbb{Z}$ is ν-semiregular. But \mathbb{Z} is not semiregular since $n \mathbb{Z}$ has no supplement in \mathbb{Z}, for any $n \geq 2$.

Lemma 4.1. Let $R=A+B$ where B is a right ideal of R and A is a semisimple right ideal of R. Then $R=A^{\prime} \oplus B$ for some right ideal A^{\prime} of A.

Proof. Let A be a semisimple right ideal of R. Then $A \cap B$ is direct summand in A. So there exists right ideal A^{\prime} of A such that $A=(A \cap B) \oplus A^{\prime}$. Since $R=A+B$, then we obtain $R=\left((A \cap B) \oplus A^{\prime}\right)+B=A^{\prime}+B$. Thus $R=A^{\prime} \oplus B$ because $(A \cap B) \cap A^{\prime}=A^{\prime} \cap B=0$.

Theorem 4.2. Let R be a ring. Then the following are equivalent:
(1) R is ν-semiregular.
(2) Every semisimple principal right ideal of R has a supplement that is a direct summand.
(3) Every semisimple principal right ideal of R has a weak supplement.
(4) For every semisimple principal right ideal A of R there exists right ideal I of R such that $R=A+I$ and $A \cap I \subseteq J(I)$.

Proof. (1) $\Leftrightarrow(2)$ It is similar to the proof of Lemma 3.2.
(2) \Rightarrow (3) Clear.
$(3) \Rightarrow(4)$ Let A be a semisimple principal right ideal of R. Since A has a weak supplement, then there exists a right ideal I of R such that $A+I=R$ and $A \cap I \ll R$. By Lemma 4.1, $R=A^{\prime} \oplus I$ for some right ideal A^{\prime} of A. Then $A \cap I \ll R$ and so $A \cap I \subseteq J(I)$.
$(4) \Rightarrow(2)$ Let A be a semisimple principal right ideal of R. By hypothesis, there exists a right ideal H of R such that $R=A+H$ and $A \cap H \subseteq J(H)$. Thus $A \cap H \subseteq J(R)$ and so $A \cap H \ll R$. Since A is semisimple, by Lemma 4.1, $R=A^{\prime} \oplus H$ for some right ideal A^{\prime} of A. Thus we obtain $A \cap H \ll H$.

Proposition 4.3. Let R be a ν-semiregular ring. Then, for every $e^{2}=e \in R$, eR is ν-semiregular.

Proof. Let $a R$ be a semisimple principal right ideal of $e R$. If $a=0$, then $e R$ is trivially ν-semiregular. Let $a \neq 0$, then $R=a R+I$ and $a R \cap I \ll I$ for some right ideal I of R. Then $e R=a R+(e R \cap I)$ and consequently by Lemma 4.1, $e R=A \oplus(e R \cap I)$ for some $A \subseteq a R$. Hence $e R \cap I$ is a direct summand of $e R$. Since $a R \cap I \ll I$, we have $a R \cap I \ll R$ and so $a R \cap I \ll e R$. Thus $a R \cap(e R \cap I) \ll e R \cap I$. Therefore $e R \cap I$ is a supplement of $a R$ in $e R$.

A right distributive ring is a ring whose lattice of right ideals is distributive.
Theorem 4.4. Let $R=R_{1} \oplus R_{2}$ be a right distributive ring. Then R is ν-semiregular if and only if each R_{i} is ν-semiregular.

Proof. Let $a R$ be a semisimple principal right ideal of R. Since R is right distributive, $a R=\left((a R) \cap R_{1}\right) \oplus\left((a R) \cap R_{2}\right)$. Let $a=a_{1}+a_{2}$ where $a_{1} \in R_{1}$ and $a_{2} \in R_{2}$. Then $a_{1} R=a R \cap R_{1}$ and $a_{2} R=a R \cap R_{2}$. It is clear that $a_{1} R$ and $a_{2} R$ are semisimple. Thus there exists $A_{i} \leq R_{i}$ such that $R_{i}=a_{i} R+A_{i}$ and $\left(a_{i} R\right) \cap A_{i} \ll A_{i}$, for each $i=1,2$. Then $R=a_{1} R+a_{2} R+A_{1}+A_{2}=a R+A_{1}+A_{2}$. Now we prove $a R \cap\left(A_{1}+A_{2}\right) \ll A_{1}+A_{2}$. Note that

$$
\begin{aligned}
a R \cap\left(A_{1}+A_{2}\right) & =\left(a R \cap R_{1}+a R \cap R_{2}\right) \cap\left(A_{1}+A_{2}\right) \\
& \leq\left(A_{1} \cap\left(\left(a R \cap R_{1}\right)+R_{2}\right)\right)+\left(A_{2} \cap\left(\left(a R \cap R_{2}\right)+R_{2}\right)\right) \\
& \leq\left(a R \cap R_{1}\right) \cap\left(A_{1}+R_{2}\right)+\left(a R \cap R_{2}\right) \cap\left(A_{2}+R_{1}\right) .
\end{aligned}
$$

On the other hand, $\left(a R \cap R_{1}\right) \cap\left(A_{1}+R_{2}\right)=\left(a_{1} R\right) \cap\left(A_{1}+R_{2}\right) \leq A_{1} \cap\left(a_{1} R+R_{2}\right) \leq$ $a_{1} R \cap\left(A_{1}+R_{2}\right)$ implies that $a_{1} R \cap\left(A_{1}+R_{2}\right)=A_{1} \cap\left(a_{1} R+R_{2}\right)=\left(a_{1} R\right) \cap A_{1}$. Similarly, $a_{2} R \cap\left(A_{2}+R_{1}\right)=A_{2} \cap\left(a_{2} R+R_{1}\right)=\left(a_{2} R\right) \cap A_{2}$. Since $a_{i} R \cap A_{i} \ll A_{i}$, $a_{1} R \cap A_{1}+a_{2} R \cap A_{2} \ll A_{1}+A_{2}$. Therefore $a R \cap\left(A_{1}+A_{2}\right) \ll A_{1}+A_{2}$. The converse is clear by Proposition 4.3.

Proposition 4.5. Let I be a small right ideal of a ring R and R / I a ν-semiregular ring. Then R is ν-semiregular.
Proof. Let A be a semisimple principal right ideal of R. Then $\frac{A+I}{I}$ is a semisimple principal right ideal of $\frac{R}{I}$. If $\frac{R}{I}=\frac{A+I}{I}$, then $R=A+I$ and so $R=A$. Thus R is ν-semiregular. Let $\frac{A+I}{I}$ be a proper right ideal of $\frac{R}{I}$. By hypothesis, $\frac{A+I}{I}$ has a supplement $\frac{B}{I}$ in $\frac{R}{I}$. That is, $\frac{R}{I}=\frac{A+I}{I}+\frac{B}{I}$ and $\frac{A+I}{I} \cap \frac{B}{I} \ll \frac{B}{I}$. Therefore $R=A+B$ and $\frac{(A \cap B)+I}{I} \ll \frac{B}{I}$. By Lemma 4.1, $R=A^{\prime} \oplus B$ for some right ideal A^{\prime} of A. Now, we show that $A \cap B \ll B$: Let $B=(A \cap B)+X$ for some right ideal X of B. Then $\frac{B}{I}=\frac{(A \cap B)+I}{I}+\frac{X+I}{I}$. Since $\frac{(A \cap B)+I}{I} \ll \frac{B}{I}$, then $\frac{B}{I}=\frac{X+I}{I}$. It follows that $B=X+I$. As B is a direct summand of $R, B=X$.

Lemma 4.6. Let R be a ring with $\operatorname{Soc}(R) \subseteq J(R)$. Then R is ν-semiregular.
Proof. Clearly, if $\operatorname{Soc}(R)=0$, then R is ν-semiregular. Let $a R$ be a semisimple principal right ideal of R, then $a R \subseteq S o c(R)$, so $a R \subseteq J(R) \ll R$. Then $R=R+a R$ and $a R \cap R=a R \ll R$.

Corollary 4.7. Let R be a right distributive ring, then R is ν-semiregular if and only if $\operatorname{Soc}(R)$ has a supplement in R.

Proof. (\Rightarrow) Clear.
(\Leftarrow) Let A be a supplement of $\operatorname{Soc}(R)$ in R. Then $R=\operatorname{Soc}(R)+A$ and $\operatorname{Soc}(A)=$ $\operatorname{Soc}(R) \cap A \ll A$. Hence, by Lemma 4.6, A is ν-semiregular. By Lemma 4.1, $R=B \oplus A$ where B is a semisimple right ideal of R. Hence, by Lemma 4.4, R is ν-semiregular.

Corollary 4.8. Let R be a ring. If $J(R)=R$, then R is ν-semiregular.
Proof. Let $J(R)=R$, then $\operatorname{Soc}(R)=\operatorname{Soc}(J(R)) \ll R$. Then, by Lemma 4.6, R is ν-semiregular.

Note that if R is a semisimple ring, then R is ν-semiregular if and only if R is semiregular. For another case, we give the following theorem which is the relation between ν-semiregular rings and semiregular rings.

Theorem 4.9. Let R be a ring. Suppose that for any $a \in R$, there exists a semisimple principal right ideal I of R such that either $a R=I+T$ or $I=a R+T^{\prime}$ for some right ideals $T, T^{\prime} \ll R$. Then R is semiregular if and only if R is ν-semiregular.

Proof. Suppose that R is a ν-semiregular ring and $a \in R$.
Case (1): Assume that there exists a semisimple principal right ideal I such that $a R=I+T$ for some small right ideal T of R. Then, by [4,41.1(4)], R is semiregular.

Case (2): Assume that there exists a semisimple principal right ideal I of R such that $I=a R+T^{\prime}$ for some small right ideal T^{\prime} of R. Since R is a ν-semiregular ring, there exists a right ideal H of R such that $R=H+I$ and $H \cap I \ll H$. Hence $R=H+a R+T^{\prime}$, and so $R=H+a R$ as $T^{\prime} \ll R$. Note that $H \cap a R \leq H \cap I \ll H$. Thus R is semiregular. The converse is clear.

Note that rings that every principal right ideal of them is semisimple, satisfy the condition of Theorem 4.9 (for example, \mathbb{Z}_{p} satisfies the condition of Theorem 4.9 for any prime p).

References

[1] T. Amouzegar, On closed semiregular rings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 1 (2016), no. 2, 423-428.
[2] Y.X. Feng, L.Z. Kui, A generalization of semiregular rings, J. Math. Research and Exposition (6) (2009), no. 29, 1124-1130.
[3] W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (1976), 1105-1120.
[4] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
[5] G. Xiao, W. Tong, Generalizations of semiregular rings, Comm. Algebra 33 (10) (2005), 34473465.
[6] M.F. Yousif, Y. Zhou, Semiregular, semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math. 4 (2002), no. 32, 1651-1671.
[7] Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq. 3 (2000), no. 7, 305-18.
(Tayyebeh Amouzegar) Department of Mathematics, Quchan University of Technology, Quchan, Iran
E-mail address: t.amoozegar@yahoo.com, t.amouzgar@qiet.ac.ir

A topological duality for M_{3}-lattices

Aldo V. Figallo and María A. Jiménez

Abstract

In this article we determine a topological duality for M_{3}-lattices, introduced by A. V. Figallo in the journal Rev. Colombiana de Matemática, XXI, 1987 ([3]). By means of this duality we describe the congruences and the subdirectly irreducible M_{3}-lattices and reach some of Figallo's results in a different way.

2010 Mathematics Subject Classification. Primary 06D75; Secondary 06D30, 03G20.
Key words and phrases. M_{3}-lattices, Priestley duality, congruences, subdirectly irreducible algebras.

1. Introduction

In this work, we extend the duality obtained by H. A. Priestley for bounded distributive lattices (see [8] and [9]), known as Priestley duality, to the case of bounded M_{3}-lattices, showing that there exists a duality between the category whose objects are the bounded M_{3}-lattices and whose morphisms are the homomorphisms in the variety of the bounded M_{3}-lattices, and the category of M_{3}-spaces and M_{3}-functions.

By means of this duality we have managed to characterize the congruence lattice of an M_{3}-lattice in terms of certain closed subsets of its associated M_{3}-space, showing that there is an isomorphism between the lattice of the congruences and the dual lattice of certain closed subsets of its associated Priestley space, more precisely the closed and \triangle-involutive subsets.

Given that any variety of algebras is determined by its subdirectly irreducible algebras and what Birkhoff's Theorem states, that Every non-trivial algebra A is isomorphic to a subdirect product of subdirectly irreducible algebras, each of which is a homomorphic image of A, it is important to have their characterization. In this work we determine the simple and subdirectly irreducible M_{3}-lattices by using the characterization of the congruence lattice obtained and reach the same results as those achieved by Figallo in an algebraic way.

This article has been organized as follows. In Section 2 we introduce the definition and properties of M_{3}-lattices given by Figallo as well as some basic definitions of Priestley's duality. In Section 3 we describe a duality for M_{3}-lattices, starting with a study of the properties of M_{3}-lattice prime spectrum, which later allowed us to define the category of M_{3}-spaces and M_{3}-morphisms. Section 4 is devoted to the study of congruences and the determination of the simple and the subdirectly irreducible algebras, concluding that these algebras coincide, for which reason the variety is semisimple.

