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Dumitru Buşneag, University of Craiova, Romania

Philippe G. Ciarlet, French Academy of Sciences, France

Nicolae Constantinescu, University of Craiova, Romania

Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain

Gioia Failla, Mediterranea University of Reggio Calabria, Italy

Roberta Filippucci, University of Perugia, Italy

George Georgescu, University of Bucharest, Romania
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Constantin Năstăsescu, Romanian Academy, Romania

Constantin P. Niculescu, University of Craiova, Romania

Patrizia Pucci, University of Perugia, Italy
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A new generalization of semiregular rings

Tayyebeh Amouzegar

Abstract. A ring R is called ν-semiregular if for every semisimple principal right ideal aR of
R, there exists e2 = e ∈ aR such that (1− e)a ∈ J(R). The class of right ν-semiregular rings

contains all semiregular rings. Some properties of these rings are studied and some results

about semiregular rings are extended.
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1. Introduction

Semiregular rings were introduced by Nicholson in 1976. These rings constitute
the class of rings that posses beautiful homological and non homological properties.
Following [3], a ring R is called a semiregular ring if for each a ∈ R, there exists e2 =
e ∈ aR such that (1 − e)a ∈ J(R). Semiregular rings and their generalizations have
been studied by many authors (see [1, 2, 5, 6, 7]). In this note, we define ν-semiregular
rings, as a generalization of semiregular rings. A ring R is called ν-semiregular if for
every semisimple principal right ideal aR of R, there exists e2 = e ∈ aR such that
(1−e)a ∈ J(R). Clearly, any semiregular ring is ν-semiregular but ν-semiregular rings
need not be semiregular (see Example 4.1). In this paper our aim is to generalize some
corresponding known results on semiregular rings.

In Section 2, we introduce the concept of the θ equivalence relation on the set of
right ideals of a ring. We say right ideals I, I ′ of R are θ equivalent, IθI ′, if and only

if I+I′

I ⊆ J(R)+I
I and I+I′

I′ ⊆ J(R)+I′

I′ . We investigate some basic properties of the θ
relation.

In Section 3, we use the θ relation to give a new characterization of semiregular
rings.

In Section 4, a characterization of ν-semiregular rings is given. We examine when
direct sum of ν-semiregular rings is ν-semiregular. We give some sufficient conditions
under which a ν-semiregular ring is semiregular.

Throughout this paper R will denote an associative ring with identity, M a unitary
right R-module. We will use the notation N � M to indicate that N is small in M
(i.e. ∀L �M,L+N 6= M).
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2. The θ relation

Definition 2.1. Any right ideals I, I ′ of R are θ equivalent, IθI ′, if and only if
I+I′

I ⊆ J(R)+I
I and I+I′

I′ ⊆ J(R)+I′

I′ .

Lemma 2.1. θ is an equivalence relation.

Proof. It is clear that the reflexive and symmetric properties satisfy. For transitivity,
suppose AθB and BθC. So

A+B
A ⊆ J(R)+A

A and A+B
B ⊆ J(R)+B

B
B+C
B ⊆ J(R)+B

B and B+C
C ⊆ J(R)+C

C .

So
A+B ⊆ J(R) +A and A+B ⊆ J(R) +B

B + C ⊆ J(R) +B and B + C ⊆ J(R) + C.

It is easy to see that A+ C ⊆ J(R) +A and A+ C ⊆ J(R) + C. Hence AθC. �

Note that the zero ideal is θ equivalent to any right ideal contained in J(R). Also,
if R = Z then mZθnZ if and only if m and n are divisible by the same primes.

Theorem 2.2. Let A and B be right ideals of R. The following are equivalent:
(1) AθB.
(2) A+B

A � R
A and A+B

B � R
B .

(3) For every right ideal I of R such that A + B + I = R then A + I = M and
B + I = R.

(4) If H ≤ R with A + H = R then B + H = R, and if K ≤ R with B + K = R
then A+K = R.

Proof. (1)⇔ (2) It is clear.
(2)⇒ (3) Let I ≤ R such that A+B + I = R. Then

A+B

B
+
B + I

B
=
R

B
⇒ B + I

B
=
R

B
⇒ B + I = R.

Similarly, A+ I = R.
(3) ⇔ (4) Let H ≤ R such that A + H = R. Then A + H + B = M . By (3),

B + H = R. Let K ≤ R such that B + K = R. Then A + B + K = R. By (3),
A+K = R. Conversely, suppose that A+ (B + I) = R. So B + (B + I) = R. Thus
B + I = R. Similarly, A+ I = R.

(3) ⇒ (2) Let X
B ≤

R
B such that A+B

B + X
B = R

B . Then A + B + X = R. Hence

B +X = X = R since B ⊆ X. Thus A+B
B � R

B . Similarly, A+B
A � R

A . �

Corollary 2.3. Let A,B ≤ R such that A ⊆ B+ I and B ⊆ A+ I ′, where I, I ′ � R.
Then AθB.

Proof. Let A + B + H = R, for some H ≤ R. Then (B + I) + B + H = R. So
B + I +H = R. Thus B +H = R. Similarly, A+H = R. �

Note that there are rings R with H,A,B ≤ R such that R = A+H = B+H, but
A is not θ related to B. For example, take R = Z, H = 3Z, A = 2Z and B = 5Z.

Proposition 2.4. Let A1, A2, B1, B2 be right ideals of R such that A1θB1 and A2θB2.
Then (A1 +A2)θ(B1 +B2) and (A1 + Y2)θ(B1 +A2).
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Proof. Let H ≤ R such that A1+A2+B1+B2+H = R. Then A2+B1+B2+H = R
and A1 + A2 + B2 + H = R, since A1θB1. Moreover, B1 + B2 + H = R and
A1 + A2 + H = R, because A2θB2. By Theorem 2.2, (A1 + A2)θ(B1 + B2). From
Lemma 2.1, we have (A1 + Y2)θ(B1 +A2). �

Theorem 2.5. Let A,B be right ideals of R such that AθB. Then
(1) A� R if and only if B � R.
(2) If A is a direct summand of R and B a principal right ideal of R, then A is

also principal.
(3) A has a (weak) supplement C in R if and only if C is a (weak) supplement for

B.

Proof. (1) (⇒) Suppose that A � R. Let H ≤ R such that B + H = M . Then
A+B+H = R. By Theorem 2.2, A+H = R. Since A� R, H = R. Hence B � R.

(⇐) It is clear because θ is symmetric by Lemma 2.1.
(2) Assume that R = A⊕A′ for some A′ ≤ R. By Theorem 2.2, R = B+A′. Since

B+A′

A′ = R
A′
∼= A, A is principal.

(3) Suppose that C is a supplement for A. Then R = A + C = A + B + C. By
Theorem 2.2, B+C = R. Assume that H ⊆ C and B+H = R. Then A+B+H = R.
By Theorem 2.2, A + H = R. By the minimality of C, H = C. Hence C is a
supplement for B. The converse is true because θ is symmetric (Lemma 2.1).

Now suppose that C is a weak supplement for A. Then A+C = R and A∩C � R.
By Theorem 2.2, B +C = R. Let us to show that B ∩C � R. Let H ≤ R such that
B ∩ C + H = R. Since B ∩ C ⊆ B, B + H = R and C + H = R. By Theorem 2.2,
A+H = R. Since B ∩ C ⊆ C, C = C ∩M = (B ∩ C) + (C ∩H). Then

R = B + C = B +B ∩ C + C ∩H = B + C ∩H.
Hence A+B + C ∩H = R. By Theorem 2.2, A+ C ∩H = R. Hence H = H ∩R =
H∩(C∩H+A) = (C∩H)+A∩H. Thus R = C+H = (B∩C)+(C∩H)+(A∩H) ⊆
C +A ∩H ⊆ R. So R = C + (A ∩H) and hence A = A ∩R = A ∩ ((A ∩H) + C) =
A∩H+A∩C. Since A∩C � R, R = A+H = A∩C+A∩H+H = A∩H+H = H.
Therefore B ∩ C � R. The converse holds by the symmetry of the θ relation. �

Proposition 2.6. Let R = R1 ⊕ R2 and A,B ≤ R1. Then AθB in R if and only if
AθB in R1.

Proof. (⇒) Let AθB in R and A+B + I = R1 for some right ideal I of R. We want
to show A+ I = R1 and B+ I = R1. Since AθB in R, R = R1⊕R2 = A+B+ I+R2

implies A+ I +R2 = R and B + I +R2 = R. So A+ I = R1 and B + I = R1. From
Theorem 2.2, we get AθB in R1.

(⇐) Let AθB in R1. Then A+B
A ⊆ J(R1)+A

A implies A+B
A ⊆ J(R)+A

A . Similarly,
A+B
B ⊆ J(R)+A

B . �

3. Semiregular rings

Recall that an element a ∈ R is von Neumann regular if a ∈ aRa. A ring R is
called von Neumann regular if, for any a ∈ R, a is von Neumann regular.

Lemma 3.1. The following conditions are equivalent for an element a of a ring R:
(1) There exists e2 = e ∈ aR such that (1− e)a ∈ J(R).
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(2) There exists e2 = e ∈ Ra such that a(1− e) ∈ J(R).
(3) There exists a von Neumann regular element b ∈ R with a− b ∈ J(R).
(4) There exist two right ideals A and B of R such that aR = A ⊕ B, where A is

a direct summand of R and B is small in R.

Proof. By [3, Lemma 2.1]. �

Let K and N be submodules of an R-module M . K is called a supplement of N
in M if M = K +N and K is minimal with respect to this property, or equivalently,
M = K +N and K ∩N � K [4].

Lemma 3.2. A ring R is semiregular if and only if every principal right ideal I of R
has a supplement which is a direct summand.

Proof. Since R is a semiregular ring, for all a ∈ R, R has a decomposition R = A⊕B
with A ⊆ aR and B ∩ aR � R. Thus R = aR + B and so B is a supplement of
aR which is a summand of R. Conversely, let R = aR + B, aR ∩ B � B and B is
a direct summand of R. Hence there exists A ⊆ aR with R = A ⊕ B and so R is
semiregular. �

Theorem 3.3. Let R be a ring. The following are equivalent:
(1) R is semiregular.
(2) For every principal right ideal I of R, there exists an idempotent e2 = e ∈ I

such that IθeR.
(3) For every principal left ideal I of R, there exists an idempotent e2 = e ∈ I such

that IθRe.
(4) Every principal right ideal I of R has a supplement which is a direct summand.
(5) Every principal left ideal I of R has a supplement which is a direct summand.

Proof. (1) ⇒ (2) Let a ∈ R. From (1), there exists an idempotent e2 = e ∈ aR

such that (1 − e)a ∈ J(R). Since eR ⊆ aR, aR+eR
aR ⊆ J(R)+aR

aR . By modularity,

aR = eR ⊕ ((1 − e)R ∩ aR). Hence aR+eR
eR = eR⊕((1−e)R∩aR)

eR ⊆ eR+J(R)
eR . Therefore

aRθeR.
(2) ⇒ (4) Let a ∈ R. By (2), there exists an idempotent e2 = e ∈ R such that

aRθeR. Since R = eR⊕ (1− e)R, (1− e)R is a supplement of eR. Hence (1− e)R is
a supplement of aR in R by Theorem 2.5.

(4)⇔ (1) By Lemma 3.2.
(1)⇒ (3)⇒ (5)⇒ (1) It can be proved similarly. �

Theorem 3.4. Let R be a ring. Then R is semiregular if and only if for each principal
right ideal I of R, there exists a direct summand A and a small right ideal H of R
such that I +H = A+H = I +A.

Proof. Assume that R is semiregular. Then there exists a direct summand A of R
such that IθA by Theorem 3.3. By Proposition 2.4, Iθ(I + A) and Aθ(I + A). Note
that R = A⊕A′ for some A′ ≤ R. By Theorem 2.5, A′ is a supplement for A, I and
I + A. Hence I +H = A+H = I + A, where H = (I + A) ∩ A′ � R. The converse
follows from Corollary 2.3. �
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4. ν-Semiregular ring

We say that a ring R is ν-semiregular if for every semisimple principal right ideal
aR of R there exists e2 = e ∈ R such that (1− e)a ∈ J(R).

Clearly semiregular rings are ν-semiregular but the converse need not be true as
we see in the following example.

Example 4.1. Let Z be the ring of all integers. Since Soc(Z) = 0, Z is ν-semiregular.
But Z is not semiregular since nZ has no supplement in Z, for any n ≥ 2.

Lemma 4.1. Let R = A + B where B is a right ideal of R and A is a semisimple
right ideal of R. Then R = A′ ⊕B for some right ideal A′ of A.

Proof. Let A be a semisimple right ideal of R. Then A ∩B is direct summand in A.
So there exists right ideal A′ of A such that A = (A ∩ B) ⊕ A′. Since R = A + B,
then we obtain R = ((A ∩ B) ⊕ A′) + B = A′ + B. Thus R = A′ ⊕ B because
(A ∩B) ∩A′ = A′ ∩B = 0. �

Theorem 4.2. Let R be a ring. Then the following are equivalent:
(1) R is ν-semiregular.
(2) Every semisimple principal right ideal of R has a supplement that is a direct

summand.
(3) Every semisimple principal right ideal of R has a weak supplement.
(4) For every semisimple principal right ideal A of R there exists right ideal I of

R such that R = A+ I and A ∩ I ⊆ J(I).

Proof. (1)⇔ (2) It is similar to the proof of Lemma 3.2.
(2)⇒ (3) Clear.
(3) ⇒ (4) Let A be a semisimple principal right ideal of R. Since A has a weak

supplement, then there exists a right ideal I of R such that A+I = R and A∩I � R.
By Lemma 4.1, R = A′ ⊕ I for some right ideal A′ of A. Then A ∩ I � R and so
A ∩ I ⊆ J(I).

(4) ⇒ (2) Let A be a semisimple principal right ideal of R. By hypothesis, there
exists a right idealH ofR such thatR = A+H and A∩H ⊆ J(H). Thus A∩H ⊆ J(R)
and so A∩H � R. Since A is semisimple, by Lemma 4.1, R = A′⊕H for some right
ideal A′ of A. Thus we obtain A ∩H � H. �

Proposition 4.3. Let R be a ν-semiregular ring. Then, for every e2 = e ∈ R, eR is
ν-semiregular.

Proof. Let aR be a semisimple principal right ideal of eR. If a = 0, then eR is trivially
ν-semiregular. Let a 6= 0, then R = aR+ I and aR ∩ I � I for some right ideal I of
R. Then eR = aR+ (eR∩ I) and consequently by Lemma 4.1, eR = A⊕ (eR∩ I) for
some A ⊆ aR. Hence eR ∩ I is a direct summand of eR. Since aR ∩ I � I, we have
aR ∩ I � R and so aR ∩ I � eR. Thus aR ∩ (eR ∩ I)� eR ∩ I. Therefore eR ∩ I is
a supplement of aR in eR. �

A right distributive ring is a ring whose lattice of right ideals is distributive.

Theorem 4.4. Let R = R1⊕R2 be a right distributive ring. Then R is ν-semiregular
if and only if each Ri is ν-semiregular.
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Proof. Let aR be a semisimple principal right ideal of R. Since R is right distributive,
aR = ((aR) ∩R1)⊕ ((aR) ∩R2). Let a = a1 + a2 where a1 ∈ R1 and a2 ∈ R2. Then
a1R = aR ∩ R1 and a2R = aR ∩ R2. It is clear that a1R and a2R are semisimple.
Thus there exists Ai ≤ Ri such that Ri = aiR + Ai and (aiR) ∩ Ai � Ai, for
each i = 1, 2. Then R = a1R + a2R + A1 + A2 = aR + A1 + A2. Now we prove
aR ∩ (A1 +A2)� A1 +A2. Note that

aR ∩ (A1 +A2) = (aR ∩R1 + aR ∩R2) ∩ (A1 +A2)

≤ (A1 ∩ ((aR ∩R1) +R2)) + (A2 ∩ ((aR ∩R2) +R2))

≤ (aR ∩R1) ∩ (A1 +R2) + (aR ∩R2) ∩ (A2 +R1).

On the other hand, (aR∩R1)∩ (A1 +R2) = (a1R)∩ (A1 +R2) ≤ A1 ∩ (a1R+R2) ≤
a1R ∩ (A1 + R2) implies that a1R ∩ (A1 + R2) = A1 ∩ (a1R + R2) = (a1R) ∩ A1.
Similarly, a2R ∩ (A2 + R1) = A2 ∩ (a2R + R1) = (a2R) ∩ A2. Since aiR ∩ Ai � Ai,
a1R∩A1 +a2R∩A2 � A1 +A2. Therefore aR∩ (A1 +A2)� A1 +A2. The converse
is clear by Proposition 4.3. �

Proposition 4.5. Let I be a small right ideal of a ring R and R/I a ν-semiregular
ring. Then R is ν-semiregular.

Proof. Let A be a semisimple principal right ideal of R. Then A+I
I is a semisimple

principal right ideal of R
I . If R

I = A+I
I , then R = A + I and so R = A. Thus R

is ν-semiregular. Let A+I
I be a proper right ideal of R

I . By hypothesis, A+I
I has a

supplement B
I in R

I . That is, R
I = A+I

I + B
I and A+I

I ∩
B
I �

B
I . Therefore R = A+B

and (A∩B)+I
I � B

I . By Lemma 4.1, R = A′ ⊕ B for some right ideal A′ of A. Now,
we show that A ∩ B � B: Let B = (A ∩ B) +X for some right ideal X of B. Then
B
I = (A∩B)+I

I + X+I
I . Since (A∩B)+I

I � B
I , then B

I = X+I
I . It follows that B = X+I.

As B is a direct summand of R, B = X. �

Lemma 4.6. Let R be a ring with Soc(R) ⊆ J(R). Then R is ν-semiregular.

Proof. Clearly, if Soc(R) = 0, then R is ν-semiregular. Let aR be a semisimple
principal right ideal of R, then aR ⊆ Soc(R), so aR ⊆ J(R)� R. Then R = R+ aR
and aR ∩R = aR� R. �

Corollary 4.7. Let R be a right distributive ring, then R is ν-semiregular if and only
if Soc(R) has a supplement in R.

Proof. (⇒) Clear.
(⇐) Let A be a supplement of Soc(R) in R. Then R = Soc(R) +A and Soc(A) =

Soc(R)∩A� A. Hence, by Lemma 4.6, A is ν-semiregular. By Lemma 4.1, R = B⊕A
whereB is a semisimple right ideal ofR. Hence, by Lemma 4.4, R is ν-semiregular. �

Corollary 4.8. Let R be a ring. If J(R) = R, then R is ν-semiregular.

Proof. Let J(R) = R, then Soc(R) = Soc(J(R)) � R. Then, by Lemma 4.6, R is
ν-semiregular. �

Note that if R is a semisimple ring, then R is ν-semiregular if and only if R is
semiregular. For another case, we give the following theorem which is the relation
between ν-semiregular rings and semiregular rings.
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Theorem 4.9. Let R be a ring. Suppose that for any a ∈ R, there exists a semisimple
principal right ideal I of R such that either aR = I+T or I = aR+T ′ for some right
ideals T, T ′ � R. Then R is semiregular if and only if R is ν-semiregular.

Proof. Suppose that R is a ν-semiregular ring and a ∈ R.
Case (1): Assume that there exists a semisimple principal right ideal I such that

aR = I +T for some small right ideal T of R. Then, by [4, 41.1(4)], R is semiregular.
Case (2): Assume that there exists a semisimple principal right ideal I of R such

that I = aR + T ′ for some small right ideal T ′ of R. Since R is a ν-semiregular
ring, there exists a right ideal H of R such that R = H + I and H ∩ I � H. Hence
R = H + aR+ T ′, and so R = H + aR as T ′ � R. Note that H ∩ aR ≤ H ∩ I � H.
Thus R is semiregular. The converse is clear. �

Note that rings that every principal right ideal of them is semisimple, satisfy the
condition of Theorem 4.9 (for example, Zp satisfies the condition of Theorem 4.9 for
any prime p).
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A. V. Figallo in the journal Rev. Colombiana de Matemática, XXI, 1987 ([3]). By means

of this duality we describe the congruences and the subdirectly irreducible M3−lattices and
reach some of Figallo’s results in a different way.
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1. Introduction

In this work, we extend the duality obtained by H. A. Priestley for bounded dis-
tributive lattices (see [8] and [9]), known as Priestley duality, to the case of bounded
M3−lattices, showing that there exists a duality between the category whose objects
are the bounded M3−lattices and whose morphisms are the homomorphisms in the va-
riety of the bounded M3−lattices, and the category of M3−spaces and M3−functions.

By means of this duality we have managed to characterize the congruence lattice of
an M3−lattice in terms of certain closed subsets of its associated M3−space, showing
that there is an isomorphism between the lattice of the congruences and the dual
lattice of certain closed subsets of its associated Priestley space, more precisely the
closed and 4-involutive subsets.

Given that any variety of algebras is determined by its subdirectly irreducible
algebras and what Birkhoff’s Theorem states, that Every non-trivial algebra A is
isomorphic to a subdirect product of subdirectly irreducible algebras, each of which is
a homomorphic image of A, it is important to have their characterization. In this
work we determine the simple and subdirectly irreducible M3−lattices by using the
characterization of the congruence lattice obtained and reach the same results as those
achieved by Figallo in an algebraic way.

This article has been organized as follows. In Section 2 we introduce the definition
and properties of M3−lattices given by Figallo as well as some basic definitions of
Priestley’s duality. In Section 3 we describe a duality for M3−lattices, starting with a
study of the properties of M3−lattice prime spectrum, which later allowed us to define
the category of M3−spaces and M3−morphisms. Section 4 is devoted to the study
of congruences and the determination of the simple and the subdirectly irreducible
algebras, concluding that these algebras coincide, for which reason the variety is semi-
simple.
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