
--

ANNALS
OF THE

UNIVERSITY OF CRAIOVA
 Series: AUTOMATION, COMPUTERS,

 ELECTRONICS and MECHATRONICS

Vol. 11 (38), No. 1, 2014
ISSN 1841-0626

--

�������	�
�����������	

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: AUTOMATION, COMPUTERS, ELECTRONICS
AND MECHATRONICS

Vol. 11 (38), No. 1, 2014 ISSN 1841-0626

Note: The “Automation, Computers, Electronics and
 Mechatronics Series” emerged from “Electrical
 Engineering Series” (ISSN 1223-530X) in 2004.

 Editor-in-chief:
��������	
���� – University of Craiova, Romania

 Editorial Board:
������	������ – University of Craiova, Romania
Eugen ����� – University of Craiova, Romania
Jerôme BOUDY – University Telecom Paris Sud, France
Eric CASTELLI – MICA Research Centre, INP Grenoble, France
Ileana HAMBURG – Institute for Work and Technology, FH

Gelsenkirchen, Germany
Vladimir KHARITONOV – University of St. Petersburg, Russia
Peter KOPACEK – Institute of Handling Device and Robotics, Vienna

University of Technology, Austria
Rogelio LOZANO – CNRS – HEUDIASYC, France
Marin LUNGU – University of Craiova, Romania
Sabine MONDIÉ – CINVESTAV, Mexico
Silviu NICULESCU – CNRS – SUPELEC (L2S), France
������	��������� – University of Craiova, Romania
Emil PETRE – University of Craiova, Romania
Dan POPESCU – University of Craiova, Romania
Dorina PURCARU – University of Craiova, Romania
Philippe TRIGANO – Université de Technologie de Compiègne, France
Carlos VALDERRAMA – Faculty of Engineering of Mons, Belgium

Address for correspondence:
��������	
����
University of Craiova
Faculty of Automation, Computers and Electronics
Al.I. Cuza Street, No. 13
RO-200585, Craiova, Romania
Phone: +40-251-438198, Fax: +40-251-438198
Email: vrasvan@automation.ucv.ro

This issue has been published under the responsibility of Emil PETRE.

We exchange publications with similar institutions from country
and from abroad

Computing Minimal Separating Polygons by Convexifying Non-Self-Intersecting
Spanning Trees

Eliana-Dina Andreica*, Mugurel Ionut Andreica**

*Computer Science Department, Politehnica University of Bucharest
Splaiul Independentei 313, 060042, sector 6, Bucharest, Romania

(email: eliana.andreica@cs.pub.ro)
**Computer Science Department, Politehnica University of Bucharest

Splaiul Independentei 313, 060042, sector 6, Bucharest, Romania
(email: mugurel.andreica@cs.pub.ro)

Abstract: In this paper we present a novel approach for the problem of computing a small
perimeter simple polygon which separates a set of M red points from a set of N blue points in the
plane (i.e. all the points of the same color are inside or on the border of the polygon and all the
points of the other color are outside or on the border of the polygon). Our approach is based on
generating non-self-intersecting spanning trees of the points located inside the polygon and then
convexifying these spanning trees in order to obtain a minimal separating polygon (i.e. a polygon
whose perimeter cannot be decreased further by convexification operations and which completely
contains the original spanning tree). By generating multiple spanning trees we are able to obtain
separating polygons with various perimeter lengths. We consider both the case when the
separating polygon may only contain the original points as vertices, as well as the case when new
points can be used as vertices of the polygon. In the second case each spanning tree is convexified
to (approximately) the same polygon irrespective of the order in which the convexification
operations are performed.

Keywords: Adaptive algorithms, Polygons, Trees.

1. INTRODUCTION

In this paper we consider the well-studied problem of
computing a minimum perimeter simple polygon which
separates a set of M red points from a set of N blue points
in the plane (i.e. all the points of one color are inside the
polygon or on its border and all the points of the other
color are outside the polygon or on its border). We
consider that the M+N points are in general position (i.e.
no 3 points are collinear) and the distance between two
points is the usual Euclidean distance.

We propose a novel approach for addressing this problem
which consists of generating non-self-intersecting
spanning trees and then convexifying them in order to
obtain various separating polygons. Then we can adapt
almost any generic optimization algorithm for this
problem in order to consider the spanning tree rather than
the solution polygon. This provides several advantages: it
is very easy to generate spanning trees which lead to very
different separating polygons, while generating the
separating polygons directly would be a more
cumbersome task.

The rest of this paper is structured as follows. In Section 2
we discuss related work. In Section 3 we discuss the issue
of generating non-self-intersecting spanning trees of all
the points of a given color. In Section 4 we present our

convexification algorithm, considering two cases: (1)
when the vertices of the separating polygon must consist
of only the given points; (2) when we can add new points
as vertices to the separating polygon. In Section 5 we
show how we can include our spanning tree generation
and convexification algorithm into several generic
optimization methods for finding the minimum perimeter
separating polygon. In Section 6 we present experimental
results. In Section 7 we conclude and discuss future work.

2. RELATED WORK

The problem of computing the minimum perimeter
polygon which separates a set of M red points from a set
of N blue points has been well studied in the scientific
literature. The problem is known to be NP-hard (Eades
and Rappaport, 1993). An approximation algorithm with
an O(log(M+N)) approximation ratio was presented in
(Mata and Mitchell, 1995). A polynomial-time
approximation scheme (PTAS) for this problem was
presented in (Arora and Chang, 2003). Polygonizations of
points of a given color which exclude the points of the
other color were studied in (Fulek et al., 2010).

We are not aware of any previous publications which
report attempts to compute minimum separating polygons
by using generic optimization algorithms. In theory this
should be possible by considering candidate separating

1

polygons and by defining operations which transform a
separating polygon into another separating polygon which
is “close” to the original one. However, defining such
operations is not easy. Moreover, providing guarantees
that the optimal separating polygon can be obtained by a
sequence of these operations is difficult. On the other
hand, it is easy to define such operations and provide such
guarantees for our spanning tree-based approach.

Other related problems regarding constrained minimum
perimeter enclosing polygons (Mitchell and Winters,
1991) and minimum perimeter polygon bipartitions
(Provencal and Lachaud, 2009) were considered in the
literature.

3. GENERATING NON-SELF-INTERSECTING
SPANNING TREES

Let’s consider the problem of generating non-self-
intersecting spanning trees of all the points of the same
color. Without loss of generality, we will consider that we
need to generate non-self-intersecting spanning trees of
the M red points. A spanning tree is defined to be non-
self-intersecting if no two non-adjacent edges intersect.
Two edges are adjacent if they share a common endpoint.

First of all, it is obvious that a minimum spanning tree of
the M red points is non-self-intersecting (if two edges
(u,v) and (w,t) of the minimum spanning tree intersect,
then we could swap their endpoints and, thus, replace
them with the edges (u,w) and (v,t), in order to obtain a
spanning tree with a shorter total length, which would
imply that the original spanning tree was not a minimum
spanning tree). This leads us to a first approach for
generating non-self-intersecting spanning trees: trying to
generate spanning trees which are “close” to the minimum
spanning tree, such that they do not contain self-
intersections with a high probability. We considered a
modified Prim’s algorithm (Sedgewick and Wayne, 2011)
for generating random spanning trees which are “close” to
the minimum spanning tree. At each step of Prim’s
algorithm we have a set of points which are part of the
spanning tree while the others are still outside of the
spanning tree. For each point x outside of the spanning
tree we have a potential parent y, which, in the standard
version of Prim’s algorithm, is the closest point to x
which belongs to the spanning tree. We introduce the
following two changes. At each step of the algorithm we
first find the minimum distance Dmin between a point
outside the spanning tree and its potential parent. Then,
all the points outside the tree whose distance to their
potential parents is at most C+Dmin will be considered
candidates. C is a distance equal to a percentage CP of the
average distance between all the pairs of red points. One
of the candidates will be randomly chosen and added to
the tree (by connecting it to its potential parent). Let the
selected candidate be p. After this we consider all the
points q which are still outside the spanning tree and
compute their distance to p. If distance(p,q)+C is smaller
than the distance from q to its potential parent then we set
p to be q’s new potential parent. Otherwise, if
distance(p,q) is smaller than the distance from q to its

potential parent we set p to be q’s potential parent with a
fixed probability prob.

A second possible approach is to generate any random
spanning tree and then transform it into a spanning tree
without self-intersections. The transformation can be
performed by repeatedly applying 2-opt moves, as was
proposed in (Zhu et al., 1996) for transforming non-
simple polygons into simple polygons on the same set of
vertices.

In Fig. 1 we present a set of red and blue points and in
Fig. 2, 3 and 4 we present three different non-self-
intersecting spanning trees of the red points. We will use
these three spanning trees in order to illustrate the
convexification algorithm presented in the next section.

4. CONVEXIFYING NON-SELF-INTERSECTING
SPANNING TREES

Let’s consider that we have a non-self-intersecting
spanning tree of the red points. It is easy to transform this
tree into a non-simple separating polygon which contains
all the red points on its border. Let’s consider an arbitrary
red point q and let’s sort all of its tree neighbors r in
ascending order according to the angle the segment r-q
makes with the OX axis (from 0 to 2�). Let the order of
the K(q) tree neighbors of the red point q be r(q,0), r(q,1),
…, r(q,K(q)-1). We will now perform an Euler tour
(Tarjan and Vishkin, 1984) of the spanning tree starting
from an arbitrary point u. The first edge to be traversed
will be (u, r(u,0)). Then, let’s assume that the most recent
edge traversed was (r(v,i), v). The next traversed edge will
be (v, r(v, (i+1) modulo K(v))). The traversal will stop
when the edge (r(u, K(u)-1), u) is traversed. The initial
polygon P will consist of all the traversed edges, in the
order in which they are traversed. Note that P is not a
simple polygon. Each point q will occur as a vertex of P a
number of times equal to its degree K(q) in the spanning
tree.

After obtaining the initial polygon P corresponding to the
spanning tree we will apply the following convexification
algorithm:

1) Find three consecutive vertices u, v, w, on the
border of P, such that v is a red point and the corner
(u,v,w) can be convexified.

2) If no three consecutive vertices (u,v,w) such that
the corner (u,v,w) can be convexified were found then
stop. Otherwise convexify the corner (u,v,w) and then go
back to step 1.

We will now discuss conditions for being able to
convexify a corner (u,v,w) of P. First of all, the corner
(u,v,w) must be a concave corner. The second condition
depends on whether we can use new points as vertices of
the separating polygon or only the original M+N points
can be used as vertices. We will obtain the set S(u,v,w) of
all the points located inside the triangle (u,v,w): points
already located on the polygon border and blue points
which are not among the polygon’s vertices. We will
compute the convex hull of the set

2

},{),,(),,(' wuwvuSwvuS ∪= (1)

Fig. 1. A set of M=8 red and N=7 blue points.

Fig. 2. Non-self-intersecting spanning tree 1 of the red
points from Fig. 1.

Fig. 3. Non-self-intersecting spanning tree 2 of the red
points from Fig. 1.

Fig. 4. Non-self-intersecting spanning tree 3 of the red
points from Fig. 1.

The convex hull will consist of the segment u-w and a
chain C(u,v,w) of points going from u to w (when S(u,v,w)
is empty this chain is also the segment u-w). When new
points cannot be used (case 1), then the second condition
states that no other point from the polygon’s border
(except u and w) should be located on C(u,v,w). When
new points can be used (case 2) then there is no extra
condition besides the corner (u,v,w) being a concave
corner.

In case 1 we will replace the corner (u,v,w) by the chain
C(u,v,w) on the border of the polygon P. In case 2 we will
compute C’(u,v,w) by replacing each point q from
C(u,v,w) which is already located on P’s border (except
for u and w) by another point q’ which is very close to q,
but inside the polygon defined by C(u,v,w) and the
segments u-v and v-w. We will consider these new points
q’ to be of a third color (e.g. violet). Then we will replace
the corner (u,v,w) by the chain C’(u,v,w) on the border of
P. Note that after this convexification operation the length
of P’s perimeter decreases (because the length of C(u,v,w)
or C’(u,v,w) is smaller than the sum of the lengths of the
segments u-v and v-w).

An example of a successful corner convexification (case
1) is presented in Fig. 5 and an example of an impossible
corner convexification (case 1) is presented in Fig. 6.
Note how in Fig. 5 we can covexify the corner (u,v,w),
because C(u,v,w) consists of the sequence of points u-x-y-
w which does not contain any other points from the
polygon’s border except u and w (despite the fact that
S(u,v,w) contains the point z which belongs to the
polygon’s border). In Fig. 6 the corner (u,v,w) cannot be
convexified because C(u,v,w) contains the point x which
belongs to the polygon’s border. When we switch from
case 1 to case 2, the convexification of the corner (u,v,w)
becomes possible by creating a new point x’ very close to
the point x (and inside the polygon u-x-y-w-v) and adding
x’ to the border of the polygon, as depicted in Fig. 7.

3

Fig. 5. Successful corner convexification (case 1).

Fig. 6. Impossible corner convexification (case 1).

Fig. 7. Successful corner convexification (case 2).

In Fig. 8 we present the end result of the convexification
algorithm (case 1) when applied to the spanning tree (and
set of points) presented in Fig. 2. Solid red edges are
spanning tree edges. Dashed greed edges are edges on the
border of the separating polygon.

In Fig. 9 we present the result of the convexification
algorithm (case 1) when applied on the spanning tree (and
set of points) presented in Fig. 3. Solid red edges are
spanning tree edges located inside the separating polygon,
solid green edges are spanning tree edges located on the
boundary of the separating polygon and dashed green
edges are polygon edges not part of the spanning tree.

Note how, in the end, the resulting polygon is not simple,
because the concave corner (u,v,w) could not be
convexified (because point x is part of C(u,v,w)) and,
thus, points v and w occur twice on the boundary of the
polygon. It is not easy to know before-hand (before
starting the convexification procedure) if the
convexification algorithm will end with a simple polygon
P or not. However, this problem can be solved when
considering case 2 (i.e. when we are allowed to add new
points as vertices of the separating polygon), as depicted
in Fig. 10. Note how, by adding a new point x’ very close
to point x, we are able to convexify the corner (u,v,w)
(and then the corner (x’,w,y)) and no point occurs multiple
times on the boundary of the polygon. In fact, in case 2,
we can start from the very beginning with a simple
polygon. Let’s consider the polygon P obtained from the
Euler tour of the spanning tree. We will construct a new
polygon P’ as follows. For each corner (r(q,i), q, r(q,
(i+1) modulo K(q))) the point q will be replaced by a
copy q(i) of it which is located very close to q, in the
wedge defined by its two neighbors r(q,i) and r(q, (i+1)
modulo K(q)). For instance, a good candidate for placing
q(i) is on the bisector of the angle formed by r(q,i) and
r(q, (i+1) modulo K(q)) with q, but very close to q. When
q has only one spanning tree neighbor then r(q,i) =
r(q,(i+1) modulo K(q)). In this case we consider the
wedge to be the “exterior” wedge (whose angle is equal to
2�). The bisector of this angle goes in the opposite
direction of the segment (q,r(q,0)). Fig. 11 shows the
modified polygon P’ for the spanning tree presented in
Fig. 3, where the new points are the violet points. Then,
the convexification algorithm will start from the modified
polygon P’ which is already a simple separating polygon.

The end result of the convexification algorithm applied to
the spanning tree from Fig. 4 (considering case 1) is
presented in Fig. 12. As in Fig. 9, solid red edges are
spanning tree edges located inside the separating polygon,
solid green edges are spanning tree edges located on the
boundary of the separating polygon and dashed green
edges are polygon edges not part of the spanning tree.

Fig. 8. End result of the convexification algorithm applied
on the spanning tree and set of points from Fig. 2 (case 1).

4

Fig. 9. End result of the convexification algorithm applied
on the spanning tree and set of points from Fig. 3 (case 1).

Fig. 10. End result of the convexification algorithm
applied on the spanning tree and set of points from Fig. 3

(case 2).

Fig. 11. Modified initial separating polygon (case 2).

Fig. 12. End result of the convexification algorithm
applied on the spanning tree and set of points from Fig. 4

(case 1).

We will now discuss about several implementation issues
of the convexification algorithm presented in this section.
First of all, in step 1, the algorithm does not specify which
corner should be selected for convexification, in case
there are multiple candidates. In general, the easiest
approach would be to use a pointer u which tries to
convexify the corner (u, next(u), next(next(u))) (we
denoted by next(v) the next point on the polygon
boundary after v). If the corner (u, next(u), next(next(u)))
could be convexified, then we do not update the pointer
(because, perhaps, another convexification operation
could be performed here); otherwise, we advance the
pointer u to next(u). After the pointer was moved
completely along the polygon boundary without
performing any more convexification operations (i.e.
since the last convexification operation or since the
beginning if no such operation has been performed) we
can stop. Of course, other approaches could be used – for
instance, at each step, all the corners could be evaluated
and the corner to be convexified could be the one which
reduces the length of the polygon’s perimeter the most.

A question which arises is if the order in which we
perform the convexification operations matters for the end
result. In case 1 (when no extra points can be used as
polygon vertices), this order indeed matters. In Fig. 13 we
show an example in which three corners, (t,u,v), (u,v,w)
and (v,w,x) can be convexified. If we convexify (t,u,v) or
(v,w,x) first the final polygon will be the one depicted in
Fig. 14. If we convexify (u,v,w) first the final polygon
will be the one shown in Fig. 15.

In case 2 the order of the convexification operations does
not matter and the end result will always be
approximately the same (we say approximately because
the locations of the new points will not necessarily be
exactly the same, but they will be very close to some of
the original points). It is easy to see that in case 2 the
polygons from Fig. 14 and Fig. 15 can be convexified
further to approximately the same final polygon (shown in
Fig. 16).

5

For step 2 we need to find all the points located in a given
triangle (u,v,w). An easy O(M+N) approach is to
independently test each point on the polygon boundary
and each blue point outside of the polygon. However,
more efficient approaches can be used. For case 1 we can
preprocess the points into a static data structure which can
efficiently answer triangle range reporting queries. Data
structures with O(M+N) preprocessing and
O((M+N)0.5+F) query time exist, as well as data
structures with O((M+N)2) preprocessing and
O(log2(M+N)+F) query time or O((M+N)2+�)
preprocessing and O(log(M+N)+F) query time
(Matousek, 1994), (Chazelle et al., 1992), (Erickson,
2000), where F is the number of points located inside the
query triangle. Computing the convex hull of the points
from S’(u,v,w) can be easily performed in
O(|S’(u,v,w)|�log(|S’(u,v,w)|)) time (Dave and Dave,
2008) or better if the points inside the triangle (u,v,w) are
reported in sorted order.

In case 2, when new points can be created as vertices of
the polygon, we may need to use dynamic data structures.
A simple alternative is to use dynamic data structures for
orthogonal range search (e.g. 2D range trees, quad-trees,
kd-trees (de Berg et al., 2008), (Andreica and Tapus,
2010). Then, when performing a triangle query, we will
first find all the points located in the minimum bounding
box of the triangle (the sides of the bounding box are
parallel to the OX and OY axes) and then we will keep
only those which are also located inside the triangle.

Fig. 13. Three corners can be convexified: (t,u,v), (u,v,w)
and (v,w,x).

Fig. 14. Final polygon if we convexify the corners (t,u,v)
or (v,w,x) first in Fig. 13 (considering case 1).

Fig. 15. Final polygon if we convexify the corner (u,v,w)
first in Fig. 13 (considering case 1).

Fig. 16. Final polygon if we convexify the polygon
depicted in Fig. 13 (considering case 2). The order of

convexification operations does not matter.

5. FINDING A MINIMUM PERIMETER
SEPARATING POLYGON

In this section we will assume that we want to compute a
minimum perimeter separating polygon such that all the
red points are inside or on the border of the polygon and
all the blue points are outside or on the border of the
polygon. Obviously, a minimum perimeter separating
polygon may have either the red or the blue points inside.
So, in order to try to find a minimum perimeter separating
polygon we will need to run the algorithms presented
below twice (once considering that the red points are kept
inside the polygon and again considering that the blue
points are kept inside the polygon). We will assume that
there is a time limit for which the algorithms are allowed
to run.

Algorithm 1 is an extremely simple algorithm. It will
keep generating random non-intersecting spanning trees,
convexify them and keep the best polygon found (Popt).

Algorithm 1.
(1)Popt = empty
(2)while the time limit was not
exceeded do

6

