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Abstract: In this paper we present a novel approach for the problem of computing a small 
perimeter simple polygon which separates a set of M red points from a set of N blue points in the 
plane (i.e. all the points of the same color are inside or on the border of the polygon and all the 
points of the other color are outside or on the border of the polygon). Our approach is based on 
generating non-self-intersecting spanning trees of the points located inside the polygon and then 
convexifying these spanning trees in order to obtain a minimal separating polygon (i.e. a polygon 
whose perimeter cannot be decreased further by convexification operations and which completely 
contains the original spanning tree). By generating multiple spanning trees we are able to obtain 
separating polygons with various perimeter lengths. We consider both the case when the 
separating polygon may only contain the original points as vertices, as well as the case when new 
points can be used as vertices of the polygon. In the second case each spanning tree is convexified 
to (approximately) the same polygon irrespective of the order in which the convexification 
operations are performed. 

Keywords: Adaptive algorithms, Polygons, Trees. 

 

1. INTRODUCTION 

In this paper we consider the well-studied problem of 
computing a minimum perimeter simple polygon which 
separates a set of M red points from a set of N blue points 
in the plane (i.e. all the points of one color are inside the 
polygon or on its border and all the points of the other 
color are outside the polygon or on its border). We 
consider that the M+N points are in general position (i.e. 
no 3 points are collinear) and the distance between two 
points is the usual Euclidean distance. 

We propose a novel approach for addressing this problem 
which consists of generating non-self-intersecting 
spanning trees and then convexifying them in order to 
obtain various separating polygons. Then we can adapt 
almost any generic optimization algorithm for this 
problem in order to consider the spanning tree rather than 
the solution polygon. This provides several advantages: it 
is very easy to generate spanning trees which lead to very 
different separating polygons, while generating the 
separating polygons directly would be a more 
cumbersome task. 

The rest of this paper is structured as follows. In Section 2 
we discuss related work. In Section 3 we discuss the issue 
of generating non-self-intersecting spanning trees of all 
the points of a given color. In Section 4 we present our 

convexification algorithm, considering two cases: (1) 
when the vertices of the separating polygon must consist 
of only the given points; (2) when we can add new points 
as vertices to the separating polygon. In Section 5 we 
show how we can include our spanning tree generation 
and convexification algorithm into several generic 
optimization methods for finding the minimum perimeter 
separating polygon. In Section 6 we present experimental 
results. In Section 7 we conclude and discuss future work.  

2. RELATED WORK 

The problem of computing the minimum perimeter 
polygon which separates a set of M red points from a set 
of N blue points has been well studied in the scientific 
literature. The problem is known to be NP-hard (Eades 
and Rappaport, 1993). An approximation algorithm with 
an O(log(M+N)) approximation ratio was presented in 
(Mata and Mitchell, 1995). A polynomial-time 
approximation scheme (PTAS) for this problem was 
presented in (Arora and Chang, 2003). Polygonizations of 
points of a given color which exclude the points of the 
other color were studied in (Fulek et al., 2010). 

We are not aware of any previous publications which 
report attempts to compute minimum separating polygons 
by using generic optimization algorithms. In theory this 
should be possible by considering candidate separating 
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polygons and by defining operations which transform a 
separating polygon into another separating polygon which 
is “close” to the original one. However, defining such 
operations is not easy. Moreover, providing guarantees 
that the optimal separating polygon can be obtained by a 
sequence of these operations is difficult. On the other 
hand, it is easy to define such operations and provide such 
guarantees for our spanning tree-based approach. 

Other related problems regarding constrained minimum 
perimeter enclosing polygons (Mitchell and Winters, 
1991) and minimum perimeter polygon bipartitions 
(Provencal and Lachaud, 2009) were considered in the 
literature. 

3. GENERATING NON-SELF-INTERSECTING 
SPANNING TREES 

Let’s consider the problem of generating non-self-
intersecting spanning trees of all the points of the same 
color. Without loss of generality, we will consider that we 
need to generate non-self-intersecting spanning trees of 
the M red points. A spanning tree is defined to be non-
self-intersecting if no two non-adjacent edges intersect. 
Two edges are adjacent if they share a common endpoint. 

First of all, it is obvious that a minimum spanning tree of 
the M red points is non-self-intersecting (if two edges 
(u,v) and (w,t) of the minimum spanning tree intersect, 
then we could swap their endpoints and, thus, replace 
them with the edges (u,w) and (v,t), in order to obtain a 
spanning tree with a shorter total length, which would 
imply that the original spanning tree was not a minimum 
spanning tree). This leads us to a first approach for 
generating non-self-intersecting spanning trees: trying to 
generate spanning trees which are “close” to the minimum 
spanning tree, such that they do not contain self-
intersections with a high probability. We considered a 
modified Prim’s algorithm (Sedgewick and Wayne, 2011) 
for generating random spanning trees which are “close” to 
the minimum spanning tree. At each step of Prim’s 
algorithm we have a set of points which are part of the 
spanning tree while the others are still outside of the 
spanning tree. For each point x outside of the spanning 
tree we have a potential parent y, which, in the standard 
version of Prim’s algorithm, is the closest point to x 
which belongs to the spanning tree. We introduce the 
following two changes. At each step of the algorithm we 
first find the minimum distance Dmin between a point 
outside the spanning tree and its potential parent. Then, 
all the points outside the tree whose distance to their 
potential parents is at most C+Dmin will be considered 
candidates. C is a distance equal to a percentage CP of the 
average distance between all the pairs of red points. One 
of the candidates will be randomly chosen and added to 
the tree (by connecting it to its potential parent). Let the 
selected candidate be p. After this we consider all the 
points q which are still outside the spanning tree and 
compute their distance to p. If distance(p,q)+C is smaller 
than the distance from q to its potential parent then we set 
p to be q’s new potential parent. Otherwise, if 
distance(p,q) is smaller than the distance from q to its 

potential parent we set p to be q’s potential parent with a 
fixed probability prob. 

A second possible approach is to generate any random 
spanning tree and then transform it into a spanning tree 
without self-intersections. The transformation can be 
performed by repeatedly applying 2-opt moves, as was 
proposed in (Zhu et al., 1996) for transforming non-
simple polygons into simple polygons on the same set of 
vertices. 

In Fig. 1 we present a set of red and blue points and in 
Fig. 2, 3 and 4 we present three different non-self-
intersecting spanning trees of the red points. We will use 
these three spanning trees in order to illustrate the 
convexification algorithm presented in the next section. 

4. CONVEXIFYING NON-SELF-INTERSECTING 
SPANNING TREES 

Let’s consider that we have a non-self-intersecting 
spanning tree of the red points. It is easy to transform this 
tree into a non-simple separating polygon which contains 
all the red points on its border. Let’s consider an arbitrary 
red point q and let’s sort all of its tree neighbors r in 
ascending order according to the angle the segment r-q 
makes with the OX axis (from 0 to 2�). Let the order of 
the K(q) tree neighbors of the red point q be r(q,0), r(q,1), 
…, r(q,K(q)-1). We will now perform an Euler tour 
(Tarjan and Vishkin, 1984) of the spanning tree starting 
from an arbitrary point u. The first edge to be traversed 
will be (u, r(u,0)). Then, let’s assume that the most recent 
edge traversed was (r(v,i), v). The next traversed edge will 
be (v, r(v, (i+1) modulo K(v))). The traversal will stop 
when the edge (r(u, K(u)-1), u) is traversed. The initial 
polygon P will consist of all the traversed edges, in the 
order in which they are traversed. Note that P is not a 
simple polygon. Each point q will occur as a vertex of P a 
number of times equal to its degree K(q) in the spanning 
tree. 

After obtaining the initial polygon P corresponding to the 
spanning tree we will apply the following convexification 
algorithm: 

1) Find three consecutive vertices u, v, w, on the 
border of P, such that v is a red point and the corner 
(u,v,w) can be convexified. 

2) If no three consecutive vertices (u,v,w) such that 
the corner (u,v,w) can be convexified were found then 
stop. Otherwise convexify the corner (u,v,w) and then go 
back to step 1. 

We will now discuss conditions for being able to 
convexify a corner (u,v,w) of P. First of all, the corner 
(u,v,w) must be a concave corner. The second condition 
depends on whether we can use new points as vertices of 
the separating polygon or only the original M+N points 
can be used as vertices. We will obtain the set S(u,v,w) of 
all the points located inside the triangle (u,v,w): points 
already located on the polygon border and blue points 
which are not among the polygon’s vertices. We will 
compute the convex hull of the set  
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Fig. 1.  A set of M=8 red and N=7 blue points. 

 

Fig. 2.  Non-self-intersecting spanning tree 1 of the red 
points from Fig. 1. 

 

Fig. 3.  Non-self-intersecting spanning tree 2 of the red 
points from Fig. 1. 

 

Fig. 4.  Non-self-intersecting spanning tree 3 of the red 
points from Fig. 1. 

The convex hull will consist of the segment u-w and a 
chain C(u,v,w) of points going from u to w (when S(u,v,w) 
is empty this chain is also the segment u-w). When new 
points cannot be used (case 1), then the second condition 
states that no other point from the polygon’s border 
(except u and w) should be located on C(u,v,w). When 
new points can be used (case 2) then there is no extra 
condition besides the corner (u,v,w) being a concave 
corner. 

In case 1 we will replace the corner (u,v,w) by the chain 
C(u,v,w) on the border of the polygon P. In case 2 we will 
compute C’(u,v,w) by replacing each point q from 
C(u,v,w) which is already located on P’s border (except 
for u and w) by another point q’ which is very close to q, 
but inside the polygon defined by C(u,v,w) and the 
segments u-v and v-w. We will consider these new points 
q’ to be of a third color (e.g. violet). Then we will replace 
the corner (u,v,w) by the chain C’(u,v,w) on the border of 
P. Note that after this convexification operation the length 
of P’s perimeter decreases (because the length of C(u,v,w) 
or C’(u,v,w) is smaller than the sum of the lengths of the 
segments u-v and v-w). 

An example of a successful corner convexification (case 
1) is presented in Fig. 5 and an example of an impossible 
corner convexification (case 1) is presented in Fig. 6. 
Note how in Fig. 5 we can covexify the corner (u,v,w), 
because C(u,v,w) consists of the sequence of points u-x-y-
w which does not contain any other points from the 
polygon’s border except u and w (despite the fact that 
S(u,v,w) contains the point z which belongs to the 
polygon’s border). In Fig. 6 the corner (u,v,w) cannot be 
convexified because C(u,v,w) contains the point x which 
belongs to the polygon’s border. When we switch from 
case 1 to case 2, the convexification of the corner (u,v,w) 
becomes possible by creating a new point x’ very close to 
the point x (and inside the polygon u-x-y-w-v) and adding 
x’ to the border of the polygon, as depicted in Fig. 7. 
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Fig. 5.  Successful corner convexification (case 1). 

 

Fig. 6.  Impossible corner convexification (case 1). 

 

Fig. 7.  Successful corner convexification (case 2). 

In Fig. 8 we present the end result of the convexification 
algorithm (case 1) when applied to the spanning tree (and 
set of points) presented in Fig. 2. Solid red edges are 
spanning tree edges. Dashed greed edges are edges on the 
border of the separating polygon. 

In Fig. 9 we present the result of the convexification 
algorithm (case 1) when applied on the spanning tree (and 
set of points) presented in Fig. 3. Solid red edges are 
spanning tree edges located inside the separating polygon, 
solid green edges are spanning tree edges located on the 
boundary of the separating polygon and dashed green 
edges are polygon edges not part of the spanning tree. 

Note how, in the end, the resulting polygon is not simple, 
because the concave corner (u,v,w) could not be 
convexified (because point x is part of C(u,v,w)) and, 
thus, points v and w occur twice on the boundary of the 
polygon. It is not easy to know before-hand (before 
starting the convexification procedure) if the 
convexification algorithm will end with a simple polygon 
P or not. However, this problem can be solved when 
considering case 2 (i.e. when we are allowed to add new 
points as vertices of the separating polygon), as depicted 
in Fig. 10. Note how, by adding a new point x’ very close 
to point x, we are able to convexify the corner (u,v,w) 
(and then the corner (x’,w,y)) and no point occurs multiple 
times on the boundary of the polygon. In fact, in case 2, 
we can start from the very beginning with a simple 
polygon. Let’s consider the polygon P obtained from the 
Euler tour of the spanning tree. We will construct a new 
polygon P’ as follows. For each corner (r(q,i), q, r(q, 
(i+1) modulo K(q))) the point q will be replaced by a 
copy q(i) of it which is located very close to q, in the 
wedge defined by its two neighbors r(q,i) and r(q, (i+1) 
modulo K(q)). For instance, a good candidate for placing 
q(i) is on the bisector of the angle formed by r(q,i) and 
r(q, (i+1) modulo K(q)) with q, but very close to q. When 
q has only one spanning tree neighbor then r(q,i) = 
r(q,(i+1) modulo K(q)). In this case we consider the 
wedge to be the “exterior” wedge (whose angle is equal to 
2�). The bisector of this angle goes in the opposite 
direction of the segment (q,r(q,0)). Fig. 11 shows the 
modified polygon P’ for the spanning tree presented in 
Fig. 3, where the new points are the violet points. Then, 
the convexification algorithm will start from the modified 
polygon P’ which is already a simple separating polygon. 

The end result of the convexification algorithm applied to 
the spanning tree from Fig. 4 (considering case 1) is 
presented in Fig. 12. As in Fig. 9, solid red edges are 
spanning tree edges located inside the separating polygon, 
solid green edges are spanning tree edges located on the 
boundary of the separating polygon and dashed green 
edges are polygon edges not part of the spanning tree. 

 

Fig. 8.  End result of the convexification algorithm applied 
on the spanning tree and set of points from Fig. 2 (case 1). 
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Fig. 9.  End result of the convexification algorithm applied 
on the spanning tree and set of points from Fig. 3 (case 1). 

 

Fig. 10. End result of the convexification algorithm 
applied on the spanning tree and set of points from Fig. 3 

(case 2). 

 

Fig. 11. Modified initial separating polygon (case 2). 

 

Fig. 12. End result of the convexification algorithm 
applied on the spanning tree and set of points from Fig. 4 

(case 1). 

We will now discuss about several implementation issues 
of the convexification algorithm presented in this section. 
First of all, in step 1, the algorithm does not specify which 
corner should be selected for convexification, in case 
there are multiple candidates. In general, the easiest 
approach would be to use a pointer u which tries to 
convexify the corner (u, next(u), next(next(u))) (we 
denoted by next(v) the next point on the polygon 
boundary after v). If the corner (u, next(u), next(next(u))) 
could be convexified, then we do not update the pointer 
(because, perhaps, another convexification operation 
could be performed here); otherwise, we advance the 
pointer u to next(u). After the pointer was moved 
completely along the polygon boundary without 
performing any more convexification operations (i.e. 
since the last convexification operation or since the 
beginning if no such operation has been performed) we 
can stop. Of course, other approaches could be used – for 
instance, at each step, all the corners could be evaluated 
and the corner to be convexified could be the one which 
reduces the length of the polygon’s perimeter the most. 

A question which arises is if the order in which we 
perform the convexification operations matters for the end 
result. In case 1 (when no extra points can be used as 
polygon vertices), this order indeed matters. In Fig. 13 we 
show an example in which three corners, (t,u,v), (u,v,w) 
and (v,w,x) can be convexified. If we convexify (t,u,v) or 
(v,w,x) first the final polygon will be the one depicted in 
Fig. 14. If we convexify (u,v,w) first the final polygon 
will be the one shown in Fig. 15. 

In case 2 the order of the convexification operations does 
not matter and the end result will always be 
approximately the same (we say approximately because 
the locations of the new points will not necessarily be 
exactly the same, but they will be very close to some of 
the original points). It is easy to see that in case 2 the 
polygons from Fig. 14 and Fig. 15 can be convexified 
further to approximately the same final polygon (shown in 
Fig. 16). 
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For step 2 we need to find all the points located in a given 
triangle (u,v,w). An easy O(M+N) approach is to 
independently test each point on the polygon boundary 
and each blue point outside of the polygon. However, 
more efficient approaches can be used. For case 1 we can 
preprocess the points into a static data structure which can 
efficiently answer triangle range reporting queries. Data 
structures with O(M+N) preprocessing and 
O((M+N)0.5+F) query time exist, as well as data 
structures with O((M+N)2) preprocessing and 
O(log2(M+N)+F) query time or O((M+N)2+�) 
preprocessing and O(log(M+N)+F) query time 
(Matousek, 1994), (Chazelle et al., 1992), (Erickson, 
2000), where F is the number of points located inside the 
query triangle. Computing the convex hull of the points 
from S’(u,v,w) can be easily performed in 
O(|S’(u,v,w)|�log(|S’(u,v,w)|)) time (Dave and Dave, 
2008) or better if the points inside the triangle (u,v,w) are 
reported in sorted order. 

In case 2, when new points can be created as vertices of 
the polygon, we may need to use dynamic data structures. 
A simple alternative is to use dynamic data structures for 
orthogonal range search (e.g. 2D range trees, quad-trees, 
kd-trees (de Berg et al., 2008), (Andreica and Tapus, 
2010). Then, when performing a triangle query, we will 
first find all the points located in the minimum bounding 
box of the triangle (the sides of the bounding box are 
parallel to the OX and OY axes) and then we will keep 
only those which are also located inside the triangle. 

 

Fig. 13. Three corners can be convexified: (t,u,v), (u,v,w) 
and (v,w,x). 

 

Fig. 14. Final polygon if we convexify the corners (t,u,v) 
or (v,w,x) first in Fig. 13 (considering case 1). 

 

Fig. 15. Final polygon if we convexify the corner (u,v,w) 
first in Fig. 13 (considering case 1). 

 

Fig. 16. Final polygon if we convexify the polygon 
depicted in Fig. 13 (considering case 2). The order of 

convexification operations does not matter. 

5. FINDING A MINIMUM PERIMETER 
SEPARATING POLYGON 

In this section we will assume that we want to compute a 
minimum perimeter separating polygon such that all the 
red points are inside or on the border of the polygon and 
all the blue points are outside or on the border of the 
polygon. Obviously, a minimum perimeter separating 
polygon may have either the red or the blue points inside. 
So, in order to try to find a minimum perimeter separating 
polygon we will need to run the algorithms presented 
below twice (once considering that the red points are kept 
inside the polygon and again considering that the blue 
points are kept inside the polygon). We will assume that 
there is a time limit for which the algorithms are allowed 
to run. 

Algorithm 1 is an extremely simple algorithm. It will 
keep generating random non-intersecting spanning trees, 
convexify them and keep the best polygon found (Popt). 

Algorithm 1. 
(1)Popt = empty 
(2)while the time limit was not 
exceeded do 
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