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Constanţa Dana Constantinescu, University of Craiova, Romania

Nicolae Constantinescu, University of Craiova, Romania

Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain

Gioia Failla, Mediterranea University of Reggio Calabria, Italy

Roberta Filippucci, University of Perugia, Italy

George Georgescu, University of Bucharest, Romania

Ionel-Dumitrel Ghiba, University ”Alexandru Ioan Cuza” of Iaşi, Romania
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A study on K- paracontact and (κ, µ)- paracontact manifold
admitting vanishing Cotton tensor and Bach tensor

V. Venkatesha, N. Bhanumathi, and C. Shruthi

Abstract. The object of the present paper is to study K-paracontact manifold admitting

parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact
manifold. In that we prove for a K-paracontact metric manifold M2n+1 has parallel Cotton

tensor if and only if M2n+1 is an η-Einstein manifold and r = −2n(2n+ 1). Further we show

that if g is an η-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein.
Also we study vanishing Cotton tensor on (κ, µ)-paracontact manifold for both κ > −1 and

κ < −1. Finally, we prove that if M2n+1 is a (κ, µ)-paracontact manifold for κ 6= −1 and if
M2n+1 has vanishing Cotton tensor for µ 6= κ, then M2n+1 is an η-Einstein manifold.
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Key words and phrases. Bach tensor, Cotton tensor, η-Einstein manifold, K-paracontact
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1. Introduction

In 1921, the notion of Bach tensor was introduced by R. Bach [1] to study conformal
relativity. This is a symmetric traceless (0, 2)-type tensor B on an n-dimensional
Riemannian manifold (M, g), defined by

B(X,Y ) =
1

n− 1

n∑
i,j=1

(
(∇ei∇ejW )(X, ei, ej , Y )

)
+

1

n− 2

n∑
i,j=1

Ric(ei, ej)W (X, ei, ej , Y ), (1)

where (ei), i = 1, ..., n, is a local orthonormal frame on (M ; g), Ric is the Ricci tensor
of type (0, 2) and C is the (0, 3)-type Cotton tensor defined by[9]

C(X,Y )Z =(∇XRic)(Y,Z)− (∇YRic)(X,Z)

− 1

2(n− 1)
[g(Y, Z)(Xr)− g(X,Z)(Yr)] (2)

and W denotes the Weyl tensor of type (0, 3) defined by[9]

W (X,Y )Z =R(X,Y )Z − g(Y,Z)QX − g(X,Z)QY + g(QY,Z)X

− g(QX,Z)Y − r

2
(g(Y,Z)X − g(X,Z)Y ). (3)

Received March 4, 2020. Revised November 15, 2020.

1



2 V. VENKATESHA, N. BHANUMATHI, AND C. SHRUTHI

After Bach[1], many people worked on Bach tensor; In 1993 Pedersen and Swann[13]
studied Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature. In
2013-14 H.D. Cao and others ([6] and [7]) studied Bach tensor on gradient shrinking
and steady Ricci soliton. In 2017 Ghosh and Sharma [10] studied Sasakian manifolds
with purely transversal Bach tensor. In that article they shows a (2n+1)-dimensional
Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar
curvature ≥ 2n(2n+ 1), equality holding if and only if (M, g) is Einstein. For dimen-
sion 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition
(M, g) is complete, then it has positive Ricci curvature and is compact with finite
fundamental group π1(M). Recently in 2019 Ghosh and Sharma [9] studied classi-
fication of (κ, µ)-contact manifold with divergence free Cotton tensor and vanishing
Bach tensor.

The study of paracontact geometry was introduced by Kaneyuki and Williams in
[11]. A systematic study of paracontact metric manifolds started with the paper [16],
were the Levi-Civita connection, the curvature and a canonical connection (analogue
to the Tanaka Webster connection of the contact metric case) of a paracontact metric
manifold have been described.

There are differences between a contact metric (κ, µ)- space (M2n+1, φ, ξ, η, g) and
a paracontact metric (κ, µ)-space (M2n+1, φ, ξ, η, g). Namely, unlike in the contact
Riemannian case, a paracontact (κ, µ)-manifold such that κ = −1 in general is not
para-Sasakian. In fact, there are paracontact (κ, µ)-manifolds such that h2 = 0
(which is equivalent to take κ = −1) but with h 6= 0. For 5-dimensional, Cappelletti
Montano and Di Terlizzi gave the first example of paracontact metric (−1, 2)-space
(M2n+1, φ, ξ, η, g) with h2 = 0 but h 6= 0 in [5] and then Cappelletti Montano et. al.,
gave the first paracontact metric structures defined on the tangent sphere bundle and
constructed an example with arbitrary n in [2]. Later, for 3-dimensional, the first
numerical example was given in [8]. Another important difference with the contact
Riemannian case, due to the non-positive definiteness of the metric, is that while for
contact metric (κ, µ)-spaces the constant κ can not be greater than 1, paracontact
metric (κ, µ)-space has no restriction for the constants κ and µ.

These papers leads interest and gives motivation to us to study Bach and Cotton
tensor on K-paracontact and (κ, µ)-paracontact manifold.

After the introduction, we discuss preliminary part, it includes some basic defini-
tions and some important properties of K-paracontact and (κ, µ)-paracontact mani-
fold which are related to our paper and in the third section we study vanishing Cotton
tensor on K-paracontact manifold, in the next section we study parallel Cotton tensor
on K-paracontact manifold. In section five, we study Bach tensor on η-Einstein K-
paracontact manifold (n > 1). Finally in the last two sections, we discuss vanishing
Cotton tensor on (κ, µ)-paracontact manifold for both κ > −1 and κ < −1.

2. Preliminaries

In this section, we recall some basic definitions, which are helpful for our future studies.
For more information we refer [3],[12],[15]. A (2n+ 1)-dimensional smooth manifold
M2n+1 has a almost paracontact structure (ϕ, ξ, η) if it admits a (1, 1)-tensor field ϕ,
a vector field ξ and a 1-form η such that

ϕ2 = I − η · ξ, ϕ(ξ) = 0, η · ϕ = 0, η(ξ) = 1, (4)
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for all X,Y ∈ TM2n+1 and the eigen distributions D+ and D− of ϕ corresponding to
the respective eigenvalues 1 and −1 have equal dimension n. If an almost paracontact
manifold is endowed with a semi-Riemannian metric g such that

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ), (5)

where signature of g is necessarily (n+1, n) for allX,Y ∈ TM2n+1, then (M2n+1, ϕ, ξ, η, g)
is called an almost paracontact metric manifold. The curvature tensor R is taken with
the sign convention R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (note that an opposite convention
is used in [[3],[4],[14]]. By Q and r, we shall denote the Ricci operator determined
by S(X,Y ) = g(QX,Y ) and the scalar curvature of the metric g, respectively. The
fundamental 2-form of an almost paracontact metric manifold (M2n+1, ϕ, ξ, η, g) is
defined by Φ(X,Y ) = g(X,ϕY ). If dη = Φ, then the manifold (M2n+1, ϕ, ξ, η, g) is
said to be paracontact metric manifold and g the associated metric. In such case η is
a contact form (that is, η ∧ (dη)n 6= 0), ξ is its Reeb vector field and M2n+1 is a con-
tact manifold. If, in addition, ξ is a Killing vector field (equivalently, h = 1

2£ξϕ = 0,

where £ is the usual Lie derivative), then M2n+1 is said to be a paracontact metric
manifold. In a K-paracontact manifold, we can easily get the following formulas

∇Xξ = −ϕX + ϕhX, (6)

∇ξh = −ϕ+ ϕh2 − ϕl (7)

Ric(ξ, ξ) = g(Qξ, ξ) = Trl = Tr(h2)− 2n, (8)

for all vector fields X,Y on M , where ∇ is the operator of covariant differentia-
tion of g and Q denotes the Ricci operator associated with the Ricci tensor given
by Ric(X,Y ) = g(QX,Y ) for all vector fields X,Y on M . If the vector field ξ is
Killing (equivalently, h = 0) then M is said to be a K-paracontact manifold. On
K-paracontact manifold, the following formulas hold:

∇Xξ = −ϕX (9)

R(X, ξ)ξ = −X + η(X)ξ (10)

Qξ = −2nξ (11)

Proposition 2.1. On a K-paracontact manifold M2n+1(ϕ, ξ, η, g), we have (from
[12])

(i) (∇XQ)ξ = QϕX + 2nϕX, (12)

(ii) (∇ξQ)X = QϕX − ϕQX, (13)

for any vector field X on M2n+1.

Definition 2.1. (See [2]) A paracontact metric (κ, µ)-manifold M2n+1 is a paracon-
tact metric manifold for which the curvature tensor field satisfies

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (14)

for all vector fields X,Y on M2n+1 and for some real constants κ and µ .

Further, a paracontact metric manifold M satisfies the following properties

h2 = (1 + κ)ϕ2, (15)

Qξ = 2nκξ, (16)

(∇Xϕ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), for κ = −1, (17)
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(∇Xh)Y − (∇Y h)X =− (1 + κ)2g(X,ϕY )ξ + η(X)ϕY − η(Y )ϕX

+ (1− µ)η(X)ϕhY − η(Y )ϕhX, (18)

Q =(2(1− n) + nµ)I + (2(n− 1) + µ)h

+ (2(n− 1) + n(2κ− µ))η ⊗ ξ, for κ > −1, (19)

Q =(2(1− n) + nµ)I + (2(n+ 1) + µ)h

+ (2(n− 1) + n(2κ− µ))η ⊗ ξ, for κ < −1, (20)

for any vector fields X,Y on M , where Q denotes the Ricci operator of (M2n+1, g).

Definition 2.2. A Riemannian manifold is called an η-Einstein manifold, if it has
Ricci tensor Q such that

QY = aY + bη(Y )ξ (21)

where a, b ∈ C∞(M2n+1) and if the function b = 0 then it is called Einstein.

3. Vanishing Cotton tensor on K-paracontact manifold

Proposition 3.1. Let M2n+1 be a K-paracontact manifold. Then M2n+1 has con-
stant scalar curvature if and only if C(X, ξ)ξ = 0

Proof. Setting Z = ξ in (2) we get.

C(X,Y )ξ = g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)− 1

4n
[(Xr)η(Y )− (Y r)η(X)] (22)

Using equation (12) from Proposition [2.1] in the above equation, we get

C(X,Y )ξ = −4ng(ϕX, Y ) + g(QϕX,Y )− g(QϕY,X)− 1

4n
[(Xr)η(Y )− (Y r)η(X)]. (23)

Replacing X by ϕX and Y by ϕY in (23) we obtain,

C(ϕX,ϕY )ξ = 4ng(ϕX, Y ) + g(Qϕ2X,ϕY )− g(Qϕ2Y, ϕX) = 0, (24)

which gives

−4ng(ϕX, Y )− g(X,QϕY ) + g(QϕX,Y ) = 0. (25)

Admitting (25) in (23), we get,

(Xr)η(Y )− (Y r)η(X) = 0. (26)

Putting Y = ξ and taking X orthogonal to ξ in the above equation gives

Xr = 0. (27)

As M is paracontact manifold and X ∈ kerη which implies Xr = 0, ∀X ∈ TM2n+1.
So r is constant.

Conversely, if r is constant then substituting Y = ξ in the equation (23) gives
C(X, ξ)ξ = 0.
Hence the proof. �
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4. Parallel Cotton tensor on K-paracontact manifold M2n+1

Definition 4.1. In a Riemannian manifold M2n+1, if there is a Cotton tensor C such
that its covariant differentiation i.e., (∇WC) = 0 then the manifold is said to have
parallel Cotton tensor.

Theorem 4.1. Let M2n+1 be a K-paracontact metric manifold. Then M has parallel
Cotton tensor if and only if M2n+1 is an η-Einstein manifold and r = −2n(2n+ 1).

Proof. For a K-paracontact manifold M2n+1, the equation (2) for Y = ξ and Z = Y
is gives

C(X, ξ)Y = 2ng(ϕX, Y ) + g(QϕX,Y )− 1

4n
{(Xr)η(Y )}. (28)

Taking Y = ξ in the above equation, we get

C(X, ξ)ξ = − 1

4n
{(Xr)}. (29)

Using (29) in (22) we calculate the following relations

∇WC(X, ξ)ξ = − 1
4n{g(∇WX,Dr) + g(X,∇WDr)}, (30)

C(∇WX, ξ)ξ = − 1
4n{g(∇WX,Dr)}, (31)

C(X,ϕW )ξ = 4ng(ϕX,ϕW ) + g(QϕX,ϕW )− g(Qϕ2W,X)− 1
4n{−(ϕWr)η(X)},(32)

C(X, ξ)ϕW = 2ng(ϕX,ϕW ) + g(QϕX,ϕW ). (33)

Making use of above group of equations we obtain

(∇WC)(X, ξ)ξ = − 1

4n
{g(X,∇WDr)}+ 4ng(ϕX,ϕW ) + g(QϕX,ϕW )

−g(Qϕ2W,X)− 1

4n
{(ϕWr)η(X)}+ 2ng(ϕX,ϕW ) + g(ϕQX,ϕW ). (34)

Putting W = ξ in the above equation, the parallel Cotton tensor becomes

(∇ξC)(X, ξ)ξ = − 1

4n
{g(X,∇ξDr)} = 0. (35)

As £ξr = 0,∇ξDr = ∇Drξ = −ϕDr, which implies g(X,ϕDr) = 0, which gives
Dr = 0 and so r is constant. Then the relation (34) becomes

6ng(ϕX,ϕW ) + g(QϕX,ϕW )− g(X,QW )− 2nη(X)η(W )

−g(X,QW )− 2nη(X)η(W ) = 0. (36)

Replacing X by ϕX and W by ϕW in (36) and simplifying we get

g(QϕX,ϕW ) = −3ng(ϕX,ϕW ) +
1

2
g(QX,W ) + nη(X)η(W ). (37)

Feeding (37) in (36) we obtain

6ng(X,W ) + 6nη(X)η(W )− 3ng(X,W ) + 3nη(X)η(W ) +
1

2
g(X,ϕW )

+nη(X)η(W )− 4nη(X)η(W )− 2g(X,QW ) = 0. (38)

Contracting the equation (38) over X and W we have r = −2n(2n+ 1) and M is an
η-Einstein manifold.
Conversely, suppose M is an η-Einstein manifold and r = −2n(2n+ 1), which implies
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QY = −2nY . And so this gives C(X,Y )Z = 0.
Hence the proof. �

Lemma 4.2. Let M2n+1(n > 1) be a K-paracontact manifold. If M2n+1 satisfies
(21), then a and b are constant functions

Proof. From the condition (21) we have,

(∇XQ)Y = (Xa)Y + (Xb)η(Y )ξ + b {g(X,ϕY )ξ + η(Y )∇Xξ} . (39)

From η-Einstein condition, −2n = a+ b, so (Xa) = −(Xb).
Therefore

(∇XQ)Y = (Xa)Y − (Xa)η(Y )ξ + {−2n− a} {g(X,ϕY )ξ − η(Y )ϕX} . (40)

Contracting the above equation over X with respect to the orthonormal frame field
we get

2n+1∑
i=1

εi 〈(∇eiQ)Y, ei〉 =

2n+1∑
i=1

εi(eia)g(Y, ei) + (ξa) (41)

where ξ = g(ei, ei), as ξr = 0 gives ξa = 0. But we know that
∑2n+1
i=1 〈(∇eiQ)Y, ei〉 =

1
2 (Y r) which gives

1

2
(Y r) = g(Y,Da) (42)

as Y r = 2, so (n− 1)Y a = 0 for n > 1 becomes Y a = 0, therefore a is constant.
This completes the proof. �

5. Bach tensor on η-Einstein K-paracontact manifolds for (n > 1)

Bach tensor for 2n+ 1-dimensional manifold is given by

B(X,Y ) =
1

2n− 1


2n+1∑
i=1

εi(∇eiC)(ei, X, Y ) +

2n+1∑
i,j=1

εig(Qei, ej)W (X, ei, ej , Y )

 (43)

By lemma (4.2) we know that a and b are constants then equation (39) becomes

(∇XQ)Y = b {g(X,ϕY )ξ − η(Y )ϕX} . (44)

We know that from the lemma (4.2) r is constant and simplifying the cotton tensor
using (44)

C(X,Y )Z = bg(X,ϕY )η(Z)− bη(Y )g(ϕX,Z)− bg(Y, ϕX)η(Z) + bg(ϕY,Z)η(X).

Applying ∇W on both side of the above equation gives

(∇WC)(X,Y )Z =b∇W {2g(X,ϕY )η(Z) + η(X)g(ϕY,Z) + η(Y )g(X,ϕZ)}
= b2g(X, (∇Wϕ)Y )η(Z) + bg(X,ϕY )g(W,ϕZ) + bg((∇Wϕ)Y,Z)η(X)

+ bg(ϕY,Z)g(W,ϕX) + bg(X, (∇Wϕ)Z)η(Y ) + bg(X,ϕZ)g(W,ϕY ). (45)
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On contracting above equation over X and W gives
2n+1∑
i=1

εi(∇eiC)(ei, Y )Z = b

{
2n+1∑
i=1

εig(ei, (∇eiϕ)Y )η(Z + g(ei, (∇eiϕ)Z)η(Y )

}
+ 2bg(ϕY, ϕZ)

= b

{
2n+1∑
i=1

εi 〈R(ξ, ei)Y, ei〉 η(Z) + g(R(ξ, ei)Z, ei)η(Y )

}
+ 2bg(ϕY, ϕZ)

= b {−S(Y, ξ)η(Z)− S(Z, ξ)η(Y )}+ 2bg(ϕY, ϕZ)

= b {4nη(Y )η(Z) + 2g(ϕY, ϕZ)} .

Now we calculate the right hand side of the Bach tensor that is

2n+1∑
i,j=1

εig(Qei, ej)g(W (X, ei)ej , Y ) = −
2n+1∑
i,j=1

εig(Qei,W (X, ei)Y ).

By η-Einstein condition Qei = aei + bη(ei)ξ, which gives

2n+1∑
i,j=1

εig(Qei, ej)g(W (X, ei)ej , Y ) = −
2n+1∑
i,j=1

εig(ei + bη(ei)ξ,W (X, ei)Y )

=

2n+1∑
i=1

εig(W (X, ei)ei, Y ) + bg(W (X, ξ)ξ, Y ).

(46)

From the expression of Weyl tensor W we deduce the following relation

2n+1∑
i=1

εi 〈W (X, ei)ei, Y 〉 =

2n+1∑
i=1

εi(〈R(X, ei)ei, Y 〉 −
1

2n− 1
[g(Qei, ei)g(X,Y )

− g(QX, ei)g(ei, Y ) + g(ei, ei)g(QX,Y )− g(X, ei)g(Qei, Y )]

+
r

2n(2n− 1)
[g(ei, ei)g(X,Y )− g(X, ei)g(ei, Y )])

=S(X,Y )− 1

2n− 1
[rg(X,Y )− S(X,Y ) + (2n+ 1)S(X,Y )

− S(X,Y )] +
r

2n(2n− 1)
[(2n+ 1)g(X,Y )− g(X,Y )]

=0. (47)

Taking inner product of W (X, ξ)ξ with Y we get,

〈W (X, ξ)ξ, Y 〉 = 〈R(X, ξ)ξ, Y 〉 − 1

2n− 1
(−2n 〈X,Y 〉+ 2nη(X)η(Y ) + 〈QX,Y 〉

+ 2nη(X)η(Y )) +
r

2n(2n− 1)
(〈X,Y 〉 − η(X)η(Y ))

= 〈ϕ∇Xξ, Y 〉+
2n

2n− 1
(X,Y )− 4n

2n− 1
η(X)η(Y ) +

r

2n(2n− 1)
(X,Y )

− r

2n(2n− 1)
η(X)η(Y )− 1

2n− 1
S(X,Y )

But 〈ϕX,ϕY 〉 = −〈X,Y 〉+ η(X)η(Y ), so we get

〈W (X, ξ)ξ, Y 〉 = 1

2n− 1

{(
1 +

r

2n

)
(X,Y )−

(
1 + 2n+

r

2n

)
η(X)η(Y )

}
− 1

2n− 1
S(X,Y ) (48)
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Using the value of S(X,Y ) =
(
1 + r

2n

)
(X,Y )−

(
1 + 2n+ r

2n

)
η(X)η(Y ) in (48) gives

〈W (X, ξ)ξ, Y 〉 = 0. (49)

Therefore if g is Bach flat,

B(Y, Z) = 0 =
b

2n− 1
{4nη(Y )η(Z) + 2g(ϕY, ϕZ)} . (50)

For Y = Z = ξ we obtain b = 0. Hence we can state this result

Theorem 5.1. Let M2n+1 be an η-Einstein K-paracontact manifold. If it has Bach
flat then M2n+1 is an Einstein manifold.

6. (κ, µ)-paracontact manifold, for κ 6= −1

In this section we deal with paracontact (κ, µ)-manifolds such that κ > −1 and
κ < −1.
First for κ > −1, using (19) we calculate,

(∇XQ)Y =g(2(n− 1) + µ)(∇Xh)Y

+ (2(n− 1) + n(2κ− µ)){(∇Xη)Y ξ + η(Y )∇Xξ} (51)

Now considering the Cotton tensor on (κ, µ)-paracontact manifold as from (19), r is
constant, which implies

C(X,Y )Z = g((∇XQ)Y,Z) + g((∇YQ)X,Z). (52)

Using equation (51) we obtain

C(X,Y )Z =(2(n− 1) + µ){−(1 + κ)(2g(X,ϕY )η(Z) + η(X)g(ϕY,X)

− η(Y )g(ϕX,Z)) + (1 + µ)(η(X)g(ϕhY,Z)− η(Y )g(ϕhX,Z))}
+ 2(2(n− 1) + n(2κ− µ))g(X,ϕY )η(Z) + (2(n− 1) + n(2κ− µ))

× {η(Y )g(−ϕX + ϕhX,Z)− η(X)g(−ϕY + ϕhY,Z)}. (53)

Replacing X,Y, Z by ϕX,ϕY, ϕZ respectively in the above equation then we get
C(ϕX,ϕY )ϕZ = 0.
Similarly for κ < −1 we have from (20)

(∇XQ)Y = g(2(n− 1) + µ)(∇Xh)Y + (2(n+ 1) + n(2κ− µ)){(∇Xη)Y ξ + η(Y )∇Xξ}

Now consider the Cotton tensor with r is constant and substitute (∇XQ)Y and
(∇YQ)X values in Cotton tensor then we get

C(X,Y )Z =g((∇XQ)Y,Z) + g((∇YQ)X,Z)

=(2(n+ 1) + µ){−(1 + κ)(2g(X,ϕY )η(Z) + η(X)g(ϕY,X)

− η(Y )g(ϕX,Z)) + (1 + µ)(η(X)g(ϕhY,Z)− η(Y )g(ϕhX,Z))}
+ 2(2(n+ 1) + n(2κ− µ))g(X,ϕY )η(Z) + (2(n+ 1) + n(2κ− µ))

× {η(Y )g(−ϕX + ϕhX,Z)− η(X)g(−ϕY + ϕhY,Z)} (54)

Replacing X,Y and Z by ϕX,ϕY and ϕZ respectively in the above equation,
then C(ϕX,ϕY )ϕZ = 0.
Form the above two cases, when κ 6= −1 we obtain the following result;
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Proposition 6.1. On a (κ, µ)-paracontact metric manifold for κ 6= −1 the projection
of the image of Cotton tensor C/ϕTP (M2n+1)XϕTP (M2n+1) in ϕTp(M

2n+1) is zero, i.e.,

C(ϕX,ϕY )ϕZ = 0, ∀X,Y, Z ∈ TP (M2n+1)

7. Vanishing Cotton tensor on (κ, µ)-paracontact manifold, for κ 6= −1

In this section we deal with paracontact (κ, µ)-manifolds such that κ < −1 and κ > −1
then we have the Cotton tensor C(X,Y )Z = 0.
For κ > −1, replacing Z by ξ in equation (54) then we get

C(X,Y )ξ = 0 = (2(n− 1) + µ){−(1 + κ)(2g(X,ϕY ))}+ 2(2(n− 1) + n(n(2κ− µ))g(X,ϕY )

(2(n− 1) + µ)(1 + κ) + (2(n− 1) + n(2n− µ)) = 0 (55)

Similarly, admitting ξ in the place of X in equation (54) gives,

C(ξ, Y )Z = 0 = (2(n− 1) + µ){−(1 + κ)g(ϕY,Z) + (1 + µ)g(ϕhY,Z)}
+(2(n− 1)n(2κ− µ)){g(ϕY,Z)− g(ϕhY,Z)} (56)

Symmetrizing the above equation and replacing Y by hY we obtain

(1 + κ){(2(n− 1) + µ)(1 + µ)− (2(n− 1) + n(2κ− µ)} = 0

From equation (55) it gives,

(1 + κ){(2(n− 1) + µ)(1 + µ)− (2(n− 1) + µ)(1 + κ)} = 0

=⇒ (1 + κ)(µ− κ)(2(n− 1) + µ) = 0

The above calculations leads this result.
Case(i) If µ 6= κ then (2(n− 1) + µ) = 0. Therefore M2n+1 is η-Einstein.
Case(ii) If µ = κ then from equation (55) µ = κ = 0 or µ = κ = 0. Therefore the we
have the following result.

Lemma 7.1. Let M2n+1 be a (κ, µ)-paracontact manifold, admitting vanishing Cot-
ton tensor for κ > −1 then we have
i). If µ 6= κ then M2n+1 is an η-Einstein manifold,
ii). If (2(n− 1) + µ) 6= 0 then µ = κ = 0.

Next for κ < −1, Cotton tensor is

C(X,Y )Z =(2(n+ 1) + µ){(∇Xη)Y − (∇Y η)X}+ (2(n+ 1) + n(κ− µ)){(∇Xη)Y η(Z)

− (∇Xη)Xη(Z)}+ (2(n− 1) + n(2κ− µ)){η(Y )∇Xξ − η(X)∇Y ξ}
=(2(n+ 1) + µ){−(1 + κ)2g(X,ϕY )η(Z) + η(X)g(ϕY,Z)− η(Y )g(ϕX,Z)}

+ (1 + µ)(η(X)g(ϕhX,Z)− η(Y )g(ϕhX,Z))

+ 2(2(n− 1) + n(2κ− µ))g(X,ϕY )η(Z) + (2(n− 1) + n(2κ− µ)

× {η(Y )g(−ϕX + ϕhX,Z)− η(X)g(−ϕY + ϕhY,Z)} (57)

Substitute Z by ξ in the above equation become

C(X,Y )ξ = 0 = {(2(n+ 1) + µ)(1 + κ)− (2(n− 1) + n(2κ− µ)} (58)

Replace X by ξ in the equation (57) gives

C(ξ, Y )Z = 0 =(−2(n− 1) + µ)(1 + κ)g(ϕY,Z) + (2(n− 1) + µ)(1 + µ)g(ϕhY,Z)

+ (2(n− 1) + n(2κ+ µ)){g(ϕY,Z)− g(ϕhY,Z)}. (59)
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On symmetrizing the above equation we have

(1 + κ)(2(n+ 1) + µ)(µ− κ) = 0. (60)

Therefore we can state the following lemma

Lemma 7.2. Let M2n+1 be a (κ, µ) paracontact metric manifold for κ < −1, if
M2n+1 has vanishing Cotton tensor for µ 6= κ then M2n+1 is an η- Einstein manifold.

From case (i) of lemma (7.1) and lemma (7.2) we get the following result.

Theorem 7.3. Let M2n+1 be a (κ, µ)-paracontact manifold for κ 6= −1. If M2n+1

has vanishing Cotton tensor for µ 6= κ, then M2n+1 is an η-Einstein manifold.
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1. Introduction and preliminaries

One of the important main research area in the theory of Functional Equations (FE)
is the Hyers-Ulam stability (HUS). In the past, in 1940, the researcher Ulam proposed
a problem regarding the stability of FE to give conditions for a linear mapping near
an approximately linear mapping be in the talk at the University of Wisconsin. In
1941, author in [7] solved it. Recently, by replacing FE with Differential Equations
(DE), a generalization of Ulam’s Problem (UP) has been made and many studies
obtained the HUS of DE [17, 18].

Fractional differential equations (FDE) is an important research field, recent inves-
tigation has been recorded in this area, this includes stability [3, 12, 13, 20], finite-time
stability (FTS) [15], stabilization [14], observer design [9, 14] and fault estimation [10].
Nevertheless, the concept of Fractional Derivative (FD) is not new and is much as
old as DE. First of all, in 1695, L’Hospital proposed the question regarding FD in
a letter written to Leibniz and connected his generalization of DE. In the past few
years, many researchers have investigated on the study of HUS of FDE and published
an important number of works [1, 4, 5, 19].

Authors in [3] have proposed a novel concept named superstability (SS) which is a
special case of HUS, they have studied the stability of the following FE: ξ(χ1 +χ2) =
ξ(χ1)ξ(χ2). It is important to know that the earliest works related to SS of DE
appeared in [6, 8]. To the best of our knowledge, there is no works in the literature
which treats the same concept for the fractional order systems.

In this work, we will study the SS of the following initial value problem

CDpλ
r E(x) +A(x)E(x) = 0, (1)

with initial conditions (IC):

E(r) = CDλ
rE(r) = CD2λ

r E(r) = ... = CD(p−1)λ
r E(r) = 0, (2)
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where p ∈ N∗, CDsλ
r E ∈ C

(
[r, r + u]

)
, for each s ∈ {0, 1, ..., p}, A ∈ C

(
[r, r + u]

)
,

u > 0 and CDsλ
r = CDλ

r .
CDλ

r ...
CDλ

r (s−times).
Motivated by [6, 8], we introduce the following definition.

Definition 1.1. Suppose that E satisfies:

|ψ
(
A,E,CDλ

rE,
CD2λ

r E, ...,CDpλ
r E

)
| ≤ ν, ∀ω ∈ [r, r + u], (3)

for some ν ≥ 0 with IC therefore either

|E(ω)| ≤ ϑν, ∀ω ∈ [r, r + u],

where ϑ > 0, or
ψ
(
A,E,CDλ

rE,
CD2λ

r E, ...,CDpλ
r E

)
= 0.

Then, we say that (1) has SS with IC.

Definition 1.2. [11] Given 0 < l < 1. The Caputo fractional derivative of an
absolutely continuous function f is defined as,

CDl
cf(s) =

1

Γ(1− l)

∫ s

c

(s− τ)−lf ′(τ)dτ. (4)

Theorem 1.1. [16](Generalized Taylor’s formulat) Let 0 < η < 1. Assume that
CDtη

r1h ∈ C
(
[r1, r2]

)
, for each t ∈ {0, 1, ..., s}, with s ∈ N∗, then we have

h(x) =
s−1∑
t=0

CDtη
r1h(r1)

(x− r1)tη

Γ(tη + 1)
+ CDsη

r1 h(c)
(x− r1)sη

Γ(sη + 1)
,

with c ∈ [r1, x], for each x ∈ (r1, r2].

2. Main theorem

In this section, we present our main result.

Theorem 2.1. Assume that sup
χ∈[r,r+u]

|A(χ)| < Γ(pλ+ 1)

upλ
. Then, (1) has the SS with

IC (2).

Proof. Let ν > 0, and E ∈ C
(
[r, r + u]

)
such that CDtλ

r E ∈ C
(
[r, r + u]

)
for each

t ∈ {0, 1, ...p}, if

|CDpλ
r E(x) +A(x)E(x)| ≤ ν

and
E(r) = CDλ

rE(r) = CD2λ
r E(r) = ... = CD(p−1)λ

r E(r) = 0.

Using Theorem 1.1, we get

E(x) =

p−1∑
t=0

CDtλ
r E(r)

(x− r)tλ

Γ(tλ+ 1)
+ CDpλ

r E(c)
(x− r)pλ

Γ(pλ+ 1)
,

with c ∈ [r, x], for every x ∈ (r, r + u]. Thus

|E(x)| = |CDpλ
r E(c)

(x− r)pλ

Γ(pλ+ 1)
|

≤ sup
χ∈[r,r+u]

|CDpλ
r E(χ)| upλ

Γ(pλ+ 1)
. (5)
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Then,

sup
χ∈[r,r+u]

|E(χ)| ≤ upλ

Γ(pλ+ 1)

[
sup

χ∈[r,r+u]
|CDpλ

r E(χ)−A(χ)E(χ)|

+ sup
χ∈[r,r+u]

|A(χ)| sup
χ∈[r,r+u]

|E(χ)|
]

≤ upλ

Γ(pλ+ 1)
ν +

upλ

Γ(pλ+ 1)
sup

χ∈[r,r+u]
|A(χ)| sup

χ∈[r,r+u]
|E(χ)|. (6)

Hence,

sup
χ∈[r,r+u]

|E(χ)|
(

1− upλ

Γ(pλ+ 1)
sup

χ∈[r,r+u]
|A(χ)|

)
≤ upλ

Γ(pλ+ 1)
ν.

Therefore, there exists K > 0 such that

|E(x)| ≤ Kν,

for all x ∈ [r, r + u].
This complete the proof. �

Remark 2.1. It is important to note that in [8] authors have obtained the SS results
for DE with integer-order derivatives while in our case, the main result is obtained
for fractional-order derivatives. In this sense, our work present a full generalization
of the interesting results in [8].

3. Conclusion

In this paper, the generalized Taylor formula is used to demonstrate the SS of FDE
of higher-order under certain conditions.
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