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PREFACE

The present book is devoted to Lie algebroids geometry and its appli-
cations to optimal control and variational calculus. The framework of the
differential geometry is very useful in modelling and understanding of a large
class of natural phenomena. The Lie geometric methods are applied success-
fully in differential equations, optimal control theory or theoretical physics.
In the most of cases the study is starting with a variational problem for-
mulated for a regular Lagrangian (see [1]), on the tangent bundle TM over
the manifold M and very often the whole set of problems is transferred on
the dual space T ∗M , endowed with a Hamiltonian function, via Legendre
transformation. The case of a non-regular Lagrangians is also studied. The
problem in this case is that the proposed Lagrangian formalism yields a sin-
gular Lagrangian description, which makes the Legendre transform ill-defined
and thus no straightforward Hamiltonian formulation can be related. One of
the motivations for the present work is the study of Lagrangian systems sub-
jected to external constraints (holonomic or nonholonomic). These systems
have a wide application in many different areas as optimal control theory,
mathematical economics or sub-Riemannian geometry.

In the last years the investigations have led to a geometric framework
which is covering these phenomena. It is precisely the underlying structure of
a Lie algebroid on the phase space which allows a unified treatment. This idea
was first introduced by A. Weinstein [125, 23] in order to define a Lagrangian
formalism which is very useful for the various types of such systems.

The concept of Lie algebroids have been introduced into differential ge-
ometry since the early 1950, and also can be found in physics and algebra,
under a wide variety of names. However, the fundamental concept has been
introduced in sixties by J. Pradines [112] in relation with Lie groupoids. For
every Lie groupoid there exists an associated Lie algebroid, like as for every
Lie group there exists an associated Lie algebra. A Lie algebroid [73, 75] over
a smooth manifold M is a real vector bundle (E, π,M) with a Lie algebra
structure on its space of sections, and an application σ, named anchor, which
induces a Lie algebra homomorphism from sections of E to vector fields on
M . It is convenient to think a Lie algebroid as a substituent for the tangent
bundle of M , an element e of E as a generalized velocity, and the actual
velocity v on TM is obtained when applying the anchor to e, i.e., σ(e) = v.
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The basic example of Lie algebroid over the manifold M is the tangent
bundle TM itself, with the identity mapping as anchor. Every integrable
distribution of TM is a Lie algebroid with the inclusion as anchor and induced
Lie bracket, and every Lie algebra is a Lie algebroid over one point. An
important Lie algebroid is the cotangent bundle of a Poisson manifold [60].
Being related to many areas of geometry, as connections theory [75, 40, 24, 31,
49, 76, 111, 95] cohomology [73, 75] foliations and pseudogroups, symplectic
and Poisson geometry [66, 124, 120, 39, 121, 61, 33, 36, 97, 99, 107] the
Lie algebroids are today the object of extensive studies. More precisely,
Lie algebroids have applications in mechanical systems and optimal control
theory [30, 77, 78, 49, 29, 44, 4, 92, 96, 98, 16] (distributional systems) and are
a natural framework in which one can be developed the theory of differential
operators (exterior derivative and Lie derivative) and differential equations.

In his papers [73, 75] K. Mackenzie has been achieved a unitary study
of Lie groupoids and algebroids and together with P. Higgins [46] have in-
troduced the notion of prolongation of a Lie algebroid over a smooth map,
useful in the study of induced vector bundle by the Lie algebroid structure.
Using the geometry of Lie algebroids, A. Weinstein [125] shows that is possi-
ble to give a common description of the most interesting classical mechanical
systems. He developed a generalized theory of Lagrangian mechanics and
obtained the equations of motions, using the Poisson structure on the dual
of a Lie algebroid and Legendre transformation associated with a regular
Lagrangian. In the last years the problems raised by A. Weinstein have
been investigated by many authors. Thus, E. Martinez [69, 70, 72] obtained
the same Euler-Lagrange equations using the symplectic formalism for La-
grangian and Hamiltonian, similarly with the J. Klein formalism [57] for the
classical Lagrangian mechanics.

In the classical version of the tangent bundle (E = TM) the Klein’s
method is based on the vector bundle structure of TM and the existence
of a vector-valued 1-form. Such a form does not exist for a general Lie
algebroid [65] because of different dimensions of the horizontal and vertical
distributions, and so Klein’s approach is not applied directly. To overcome
this dificulty, E. Martinez, M de Leon, J. Marero [69, 64] have proposed a
modified version, in which the bundles tangent to E and E∗ are replaced
by the prolongations T E and T E∗ (in sense Higgins and Mackenzie [46]).
The nonholonomic Lagrangian systems and Hamiltonian mechanics on Lie
algebroids are studied by a group of E. Martinez [64]. The first step in
studying the mechanical control systems on Lie algebroids seems to be done
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by J. Cortes and E. Martinez [30], which also approached the problem of
accessibility and controllability. A framework for nonholonomic systems,
using a subbundle of a Lie algebroids is proposed by T. Mestdag and B.
Langerock [77]. A start in the study of some problems of control affine
systems and sub-Riemannian geometry, using the framework of Lie algebroids
is due to D. Hrimiuc and L. Popescu [49, 96, 98].

Control theory is splitting in two major branches: the first is the control
theory of problems described by partial differential equations where the ob-
jective functionals are mostly quadratic forms, and the second is the control
theory of problems described by the parameter dependent ordinary differen-
tial equations. In this last case it is more frequent to deal with non-linear
systems and non-quadratic objective functional. The mathematical models
from the optimal control theory cover also the economic growth in both open
and closed economies, exploatation of (non-) renewable resources, pollution
control, behaviour of firms or differential games [38, 115, 116].

The geometric methods in the control theory have been applied by many
authors (see [18, 56, 15, 71]). One of the most important issues in the
geometric approach is the analysis of the solution to the optimal control
problem as provided by Pontryagin’s Maximum Principle; that is, the curve
c(t) = (x(t), u(t)) is an optimal trajectory if there exists a lifting of x(t) to
the dual space (x(t), p(t)) satisfying the Hamilton equations, together with
a maximization condition for the Hamiltonian with respect to the control
variables u(t).

In the paper [71] E. Martinez presents the Pontryagin Maximum Principle
on Lie algebroids using the prolongation (in sense of Higgins and Mackenzie
[46]) of the Lie algebroid over the vector bundle projection of a dual bundle.
In this book we study some distributional systems with positive homogeneous
cost, using the Pontryagin Maximum Principle at the level of a Lie algebroid.

”In spite of that, the control theory can be considered part of the general
theory of differential equations, the problems that inspires it and some of the
results obtained so far, have configured a theory with a strong and definite
personality, that is already offering interesting returns to its ancestors. For in-
stance, the geometrization of non-linear affine-input control theory problems
by introducing Lie-geometrical methods into its analysis, started already by
R, Brocket [18], is inspiring classical Riemannian geometry and creating what
is called today sub-Riemannian geometry” [118, 85, 14, 2, 22, 9, 10, 11, 12, 13].

If M is a smooth n-dimensional manifold then a sub-Riemannian struc-
ture on M is a pair (D, g) where D is a distribution of rank m and g is a
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Riemannian metric on D. A piecewise smooth curve on M is called hori-
zontal if its tangent vectors are in D. The length of a horizontal curve c is
defined by

L(c) =
∫

I

√
g(ċ(t))dt, (1)

where g is a Riemannian metric on D. The distance between two points a
and b is d(a, b) = infL(c), where the infimum is taken over all horizontal
curves connecting a to b. The distance is assumed to be infinite if there is no
horizontal curve that connects these two points. If locally, the distribution
D of rank m is generated by Xi, i = 1,m a sub-Riemannian structure on M
is locally given by a control system

ẋ =
m∑

i=1

ui(t)Xi(x), (2)

of constant rank m, with the controls u(.). The controlled paths are obtained
by integrating the system (2) and are the geodesics in the framework of sub-
Riemannian geometry. If D is assumed to be bracket generating, i.e. sections
of D and iterated brackets span the entire tangent space TM , by a well-known
theorem of Chow [25] the system (2) is controllable, that is for any two points
a and b, there exists a horizontal curve which connects these points (M is
assumed to be connected).

The concept of sub-Riemannian geometry can be extended to a more
general setting, [49, 27, 28] by replacing the Riemannian metric with a posi-
tive homogeneous one. For the theory of optimal control this extension is
equivalent to the change of the quadratic cost of a control affine system
with a positive homogeneous cost. Also, the case of distribution D with
non-constant rank is generating interesting examples (Grushin case [37, 49]).

The case when the distribution D generated by vector fields Xi, i = 1,m is
integrable is also studied. In this case the distribution determines a foliation
on M and two points can be joined if and only if belongs to the same leaf.
In order to find the optimal trajectory of the system one uses the Pontryagin
Maximum Principle at the level of Lie algebroids, built different in the case
of holonomic or nonholonomic distributions.

* * *
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The book is organized in two parts. The first part entitled The geometry
of Lie algebroids contains eight chapters. In the first chapter some prelimi-
naries concerning geometrical structures on the total space of a vector bundle
are presented [82]. We focus on the notions of nonlinear connection and co-
variant derivative. In the next chapter we present the notion of Lie algebroid
including the cohomology and structure equations [73]. The notion of pro-
longation of a Lie algebroid over the vector bundle projection is studied.in
the chapter three. The Ehresmann nonlinear connection N = −LSJ with
the coefficients given by

N β
α =

1

2

(
−∂Sβ

∂yα
+ yεLβ

αε

)
,

is investigated and the relations with the Ehresmann connections on tangent
bundles TE and TM are pointed out. In the chapter four we introduce the
notion of dynamical covariant derivative and metric nonlinear connection
at the level of the Lie algebroid T E. The Lagrangian formalism on Lie
algebroids yields a canonical semispray [70]

Sε = gεβ

(
σi

β

∂L

∂xi
− σi

α

∂2L

∂xi∂yβ
yα − Lθ

βαyα ∂L

∂yθ

)
,

and a canonical Ehresman connection, which is a metric nonlinear connection.
We also have the Lagrange equations on Lie algebroids given by [125]

dxi

dt
= σi

αyα,
d

dt

(
∂L

∂yα

)
= σi

α

∂L

∂xi
− Lθ

αβyβ ∂L

∂yθ
.

In the case of positive homogeneous Lagrangian (Finsler function) we find
a canonical Ehresmann connection which depends only on Finsler function
and the structure functions of the Lie algebroid.

In the chapter five we deal with the prolongation of a Lie algebroid over
the vector bundle projections of a dual bundle. We introduce the notions of
dual adapted tangent structure J and J -regular sections. These structures
induce a canonical nonlinear connection N = −LρJ with the coefficients
given by [50]

Nαβ =
1

2

(
tαγ

∂ρβ

∂μγ

− σi
αtγβ

∂ξγ

∂qi
− ρ(tαβ) + ξγtλβLλ

γα

)
.
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In the case of Hamiltonian formalism these coefficients become [103]

Nαβ =
1

2
(σi

γ{gαβ,H} − ∂2H
∂qi∂με

(σi
βgαε + σi

αgβε) +

+ μγL
γ
εκ

∂H
∂με

∂gαβ

∂μκ

+ μγL
γ
αβ +

∂H
∂μδ

(gαεL
ε
δβ + gβεL

ε
δα)),

where {·, ·} is the Poisson bracket. The corresponding Hamilton equations
on Lie algebroid are given by [125, 64]

dqi

dt
= σi

α

∂H
∂μα

,
dμα

dt
= −σi

α

∂H
∂qi

− μγL
γ
αβ

∂H
∂μβ

.

In the chapter six we introduce the notion of dynamical covariant derivative
and metric nonlinear connection at the level of a Lie algebroid T E∗. We prove
that the canonical nonlinear connection induces by a regular Hamiltonian is
a unique metric and symmetric nonlinear connection. In the chapter seven
we investigate some aspects of the Lie algebroids geometry endowed with a
Poisson structures, the so-called Poisson-Lie algebroids. In the last chapter of
this part we present the notion of Leibniz algebroids as a weakened version of
a Lie algebroid, where the bilinear operation on sections of the vector bundle
is not necessarily skew-symmetric

Author’s papers [49, 50, 91, 92, 94, 95, 96, 97, 99, 100, 103, 104, 105, 106,
107, 109] are used in writting this part.

The purpose of the second part entitled Optimal Control is to study
the drift less control affine systems (distributional systems) with positive
homogeneous cost, using the Pontryagin Maximum Principle at the level of
a Lie algebroid in the case of constant rank of distribution.

We prove that the framework of Lie algebroids is better than cotangent
bundle in order to solve some problems of drift less control affine systems. In
the first chapter the known results on the optimal control systems are recalled
by geometric viewpoint. In the next chapter the distributional systems are
presented and the relation between the Hamiltonians on E∗ and T ∗M is given
by

H(p) = H(μ), μ = σ�(p), p ∈ T ∗
xM, μ ∈ E∗

x.

We investigate the cases of holonomic and nonholonomic distributions with
constant rank. In the holonomic case, we will consider the Lie algebroid
being just the distribution whereas in the nonholonomic case (i.e., strong
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constant rank. In the holonomic case, we will consider the Lie algebroid
being just the distribution whereas in the nonholonomic case (i.e., strong
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bracket generating distribution) the Lie algebroid is the tangent bundle with
the basis given by vectors of distribution completed by the first Lie brackets.
Also, the case of distribution D with non-constant rank is studied in the
last two sections of the chapter and some interesting examples are given. In
the last chapter we present the intrinsec relation between the distributional
systems and sub-Riemannian geometry. Thus, the optimal trajectory of our
distributional systems are the geodesics in the framework of sub-Riemannian
geometry. We investigate two classical cases: Grusin plan and Heisenberg
group, but equipped with positive homogeneous costs (Randers metric). We
are using the Pontryagin Maximum Principle at the level of Lie algebroids, in
the case of Heisenberg group and show that this idea is very useful in order
to solve a large class of distributional systems. Author’s papers [50, 96, 98,
101, 102, 106, 108] are used in writting this part.

In my opinion, the book is useful to a large class of readers: graduate
students, mathematicians and to everybody else interested in the subject of
differential geometry, differential equations, optimal control with economic
applications. I want to address my thanks to all authors mentioned in this
book and to everybody else I forgot to mention, without any intention, in
the Bibliography.

Finally, I wish to address my thanks to the referees for many useful re-
marks and suggestions concerning this book. I should like to express the
deep gratitude to professor D. Hrimiuc for the collaboration during the post-
doctoral fellowship at the University of Alberta, Edmonton, Canada, where
many ideas presented in this book have been started. Also, I want to address
my thanks to Professor P. Stavre for support and guidance given me in life
and in mathematics.
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1 THE GEOMETRY OF LIE ALGEBROIDS

The purpose of this first part is to study the geometry of a Lie algebroid
and its prolongations over the vector bundles projections. A Lie algebroid
[73, 75] over a smooth manifold M is a real vector bundle (E, π, M) with a
Lie algebra structure on its space of sections, and an application σ, named
the anchor, which induces a Lie algebra homomorphism from the sections
of E to vector fields on M . For this reason, in the first chapter we present
some results on the geometry of the total space of a vector bundle, including
nonlinear connections and covariant derivatives. In the next chapter we give
only the relevant formulas for Lie algebroid cohomology we shall need later,
and refer the reader to the monograph [73] for further details.

The chapter three deals with the prolongation T E of a Lie algebroid
over the vector bundle projection. We introduce the Ehresmann nonlinear
connection on the Lie algebroid T E and study its properties [95, 92]. We
show that the vertical part of the Lie brackets of horizontal sections from
the basis represents the components of the curvature tensor of the nonlinear
connection. We study the related connections and show that a connection
on the tangent bundle TE induces a connection on the Lie algebroid T E.
We introduce an almost complex structure on Lie algebroids and prove that
its integrability is characterized by zero torsion and curvature property of
the connection. We present the notion of dynamical covariant derivative
at the level of a Lie algebroid and show that the metric compatibility of
the semispray and associated nonlinear connection gives the one of the so
called Helmholtz conditions of the inverse problem of Lagrangian Mechanics.
In the homogeneous case a canonical nonlinear connection associated to a
Finsler function is determined. We study the linear connections on T E and
determine the torsion and curvature.

In the chapter four we study the dynamical covariant derivative and met-
ric nonlinear connection on T E [104]. We introduce the dynamical covariant
derivative as a tensor derivation and study the compatibility conditions with
a pseudo-Riemannian metric. In the case of SODE connection we find the
expression of Jacobi endomorphism and its relation with curvature tensor.
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