
Annals of the University of Craiova

Mathematics and Computer Science Series

Vol. XLIV Issue 1, June 2017

Editorial Board

Viorel Barbu, Romanian Academy, Romania
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(a): ϕ(x, ·) is an N -function, i.e. convex, nondecreasing, continuous, ϕ(x, 0) = 0,
ϕ(x, t) > 0 for all t > 0, and :

lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0 , lim

t→∞
inf
x∈Ω

ϕ(x, t)

t
=∞,

(b): ϕ(·, t) is a measurable function.
A function ϕ(x, t) which satisfies conditions (a) and (b) is called a Musielak-Orlicz
function.
For every Musielak-Orlicz function ϕ(x, t), we set ϕx(t) = ϕ(x, t) and let ϕ−1

x (t) the
reciprocal function with respect to t of ϕx(t), i.e.

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

For any two Musielak-Orlicz functions ϕ(x, t) and γ(x, t), we introduce the following
ordering:

(c): If there exist two positive constants c and T such that for almost everywhere
x ∈ Ω :

ϕ(x, t) ≤ γ(x, ct) for t ≥ T,
we write ϕ ≺ γ, and we say that γ dominate ϕ globally if T = 0, and near infinity
if T > 0.

(d): For every positive constant c and almost everywhere x ∈ Ω, if

lim
t→0

(sup
x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0 or lim

t→∞
(sup
x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0,

we write ϕ ≺≺ γ at 0 or near ∞ respectively, and we say that ϕ increases
essentially more slowly than γ at 0 or near ∞ respectively.

The Musielak-Orlicz function ψ(x, t) complementary to (or conjugate of) ϕ(x, t),
in the sense of Young with respect to the variable t, is given by

ψ(x, s) = sup
t≥0
{st− ϕ(x, t)}, (5)

and we have

st ≤ ψ(x, s) + ϕ(x, t) ∀s, t ∈ IR+. (6)

The Musielak-Orlicz function ϕ(x, t) is said to satisfy the ∆2−condition if, there
exists k > 0 and a nonnegative function h(·) ∈ L1(Ω), such that

ϕ(x, 2t) ≤ kϕ(x, t) + h(x) a.e. x ∈ Ω,

for large values of t, or for all values of t.

2.2. Musielak-Orlicz Lebesgue spaces. In this paper, the measurability of a
function u : Ω 7→ IR means the Lebesgue measurability.
We define the functional

%ϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|) dx,

where u : Ω 7→ IR is a measurable function. The set

Kϕ(Ω) = {u : Ω 7−→ IR measurable / %ϕ,Ω(u) < +∞}
is called the Musielak-Orlicz class (or the generalized Orlicz class). The Musielak-
Orlicz spaces (or the generalized Orlicz spaces) Lϕ(Ω) is the vector space generated
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by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω);
equivalently

Lϕ(Ω) =
{
u : Ω 7−→ IR measurable / %ϕ,Ω(

|u(x)|
λ

) < +∞, for some λ > 0
}
.

In the space Lϕ(Ω), we define the following two norms:

||u||ϕ,Ω = inf
{
λ > 0 /

∫
Ω

ϕ(x,
|u(x)|
λ

) dx ≤ 1
}
,

which is called the Luxemburg norm, and the so-called Orlicz norm is given by:

|||u|||ϕ,Ω = sup
||v||ψ,Ω≤1

∫
Ω

|u(x)v(x)| dx,

where ψ(x, t) is the Musielak-Orlicz function complementary (or conjugate) to ϕ(x, t).
These two norms are equivalent on the Musielak-Orlicz space Lϕ(Ω).

The closure in Lϕ(Ω) of the bounded measurable functions with compact support

in Ω is denoted by Eϕ(Ω). It is a separable space and (Eϕ(Ω))∗ = Lψ(Ω).
We have Eϕ(Ω) = Kϕ(Ω) if and only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ(x, t) has

the ∆2−condition for large values of t, or for all values of t.

2.3. Musielak-Orlicz-Sobolev spaces. We now turn to the Musielak-Orlicz-Sobolev
space W 1Lϕ(Ω) (resp. W 1Eϕ(Ω)) is the space of all measurable functions u such that
u and its distributional derivatives up to order 1 lie in Lϕ(Ω) (resp. Eϕ(Ω)). Let
α = (α1, α2, . . . , αn) with nonnegative integers αi, |α| = |α1| + |α2| + ... + |αn| and
Dαu denotes the distributional derivatives.
We define the convex modular and the norm on the Musielak-Orlicz-Sobolev spaces
W 1Lϕ(Ω) respectively by,

%ϕ,Ω(u) =
∑
|α|≤1

%ϕ,Ω(Dαu) and ||u||1,ϕ,Ω = inf
{
λ > 0 : %ϕ,Ω(

u

λ
) ≤ 1

}
,

for any u ∈W 1Lϕ(Ω).
The pair 〈W 1Lϕ(Ω), ||u||1,ϕ,Ω〉 is a Banach space if ϕ satisfies the following condition

there exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c.

The spacesW 1Lϕ(Ω) andW 1Eϕ(Ω) can be identified with subspaces of the product
of n + 1 copies of Lϕ(Ω). Denoting this product by ΠLϕ(Ω), we will use the weak
topologies σ(ΠLϕ(Ω),ΠEψ(Ω)) and σ(ΠEψ(Ω),ΠLϕ(Ω)).

The space W 1
0Eϕ(Ω) is defined as the (norm) closure of the Schwartz space D(Ω)

in W 1Eϕ(Ω), and the space W 1
0Lϕ(Ω) as the σ(ΠLϕ(Ω),ΠEψ(Ω)) closure of D(Ω) in

W 1Lϕ(Ω), (for more details on Musielak-Orlicz-Sobolev spaces we refer to [24]).

2.4. Dual space. Let W−1Lψ(Ω) (resp. W−1Eψ(Ω)) denotes the space of distribu-
tions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in
Lψ(Ω) (resp. Eψ(Ω)). It is a Banach space under the usual quotient norm.

If ψ(x, t) has the ∆2−condition, then the space D(Ω) is dense in W 1
0Lϕ(Ω) for the

topology σ(ΠLϕ(Ω),ΠLψ(Ω)) (see corollary 1 of [9]).
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3. Essential assumptions

Let Ω be a bounded open subset of IRN (N ≥ 2) with smooth boundary conditions.
Let ϕ(x, t) be a Musielak-Orlicz function and ψ(x, t) the Musielak-Orlicz function
complementary (or conjugate) to ϕ(x, t). We assume here that ψ(x, t) satisfying the
∆2−condition near infinity, therefore Lψ(Ω) = Eψ(Ω).
We assume that there exists an Orlicz function M(t) such that M(t) ≺ ϕ(x, t) near
infinity, i.e. there exist two constants c > 0 and T ≥ 0 such that

M(t) ≤ ϕ(x, ct) a.e. in Ω for t ≥ T. (7)

Let Ψ(·) be a measurable function on Ω, such that

Ψ+(·) ∈W 1
0Lϕ(Ω) ∩ L∞(Ω),

and we consider the convex set

KΨ =
{
v ∈W 1

0Lϕ(Ω) such that v ≥ Ψ a.e. in Ω
}
.

The Leray-Lions operator A : D(A) ⊂W 1
0Lϕ(Ω) 7−→W−1Lψ(Ω) given by

A(u) = −div a(x,∇u)

where a : Ω × IRN 7−→ IR is a Carathéodory function (measurable with respect to x
in Ω for every ξ in IRN , and continuous with respect to ξ in IRN for almost every x
in Ω) which satisfies the following conditions

|a(x, ξ)| ≤ β
(
K(x) + k1ψ

−1
x (ϕ(x, k2|ξ|))

)
, (8)(

a(x, ξ)− a(x, ξ∗)
)
·
(
ξ − ξ∗

)
> 0 for ξ 6= ξ∗, (9)

a(x, ξ) · ξ ≥ α ϕ(x, |ξ|), (10)

for a.e. x ∈ Ω and all ξ ∈ IRN , where K(x) is a nonnegative function lying in Eψ(Ω)
and α, β > 0 and k1, k2 ≥ 0.
We consider the quasilinear unilateral elliptic problem{

−div a(x,∇u) = f in Ω,
u = 0 in ∂Ω,

(11)

with f ∈ L1(Ω). We study the existence of entropy solution in the Musielak-Orlicz-
Sobolev spaces.

4. Some technical lemmas

Now, we present some lemmas useful in the proof of our main results.

Lemma 4.1. (see [20], Theorem 13.47) Let (un)n be a sequence in L1(Ω) and u ∈
L1(Ω) such that

(i): un → u a.e. in Ω,
(ii): un ≥ 0 and u ≥ 0 a.e. in Ω,

(iii):

∫
Ω

un dx→
∫

Ω

u dx,

then un → u in L1(Ω).

Lemma 4.2. Assuming that (8)−(10) hold, and let (un)n be a sequence in W 1
0Lϕ(Ω)

such that
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(i): un ⇀ u weakly in W 1
0Lϕ(Ω) for σ(ΠLϕ(Ω),ΠEψ(Ω)),

(ii): (a(x,∇un))n is bounded in (Lψ(Ω))N = (Eψ(Ω))N ,
(iii): Let Ωs =

{
x ∈ Ω, |∇u| ≤ s

}
and χs his characteristic function, with∫

Ω

(a(x,∇un)− a(x,∇uχs)) · (∇un −∇uχs) dx −→ 0 as n, s→∞, (12)

then ϕ(x, |∇un|) −→ ϕ(x, |∇u|) in L1(Ω) for a subsequence.

Proof. Taking s ≥ r > 0, we have :

0 ≤
∫

Ωr

(a(x,∇un)− a(x,∇u)) · (∇un −∇u) dx

≤
∫

Ωs

(a(x,∇un)− a(x,∇u)) · (∇un −∇u) dx

=

∫
Ωs

(a(x,∇un)− a(x,∇uχs)) · (∇un −∇uχs) dx

≤
∫

Ω

(a(x,∇un)− a(x,∇uχs)) · (∇un −∇uχs) dx.

(13)

thanks to (12), we obtain

lim
n→∞

∫
Ωr

(a(x,∇un)− a(x,∇u)) · (∇un −∇u) dx = 0. (14)

Using the same argument as in [15], we claim that,

∇un −→ ∇u a.e. in Ω. (15)

On the other hand, we have∫
Ω

a(x,∇un) · ∇un dx =

∫
Ω

(a(x,∇un)− a(x,∇uχs)) · (∇un −∇uχs) dx

+

∫
Ω

a(x,∇uχs) · (∇un −∇uχs) dx+

∫
Ω

a(x,∇un) · ∇uχs dx.
(16)

For the second term on the right-hand side of (16), having in mind that ψ(x, s)
verify ∆2−condition, then Lψ(Ω) = Eψ(Ω), and thanks to (8) we have a(x,∇uχs) ∈
(Eψ(Ω))N .Moreover, we have∇un ⇀ ∇u weakly in (Lϕ(Ω))N for σ(ΠLϕ(Ω),ΠEψ(Ω)),
then

lim
s,n→∞

∫
Ω

a(x,∇uχs) · (∇un −∇uχs) dx = lim
s→∞

∫
Ω

a(x,∇uχs) · (∇u−∇uχs) dx

= lim
s→∞

∫
Ω/Ωs

a(x, 0) · ∇u dx = 0.

(17)
Concerning the last term on the right-hand side of (16), since (a(x,∇un))n is bounded
in (Eψ(Ω))N and using (15), we obtain

a(x,∇un) ⇀ a(x,∇u) weakly in (Eψ(Ω))N for σ(ΠEψ(Ω),ΠLϕ(Ω)),

which implies that

lim
s,n→∞

∫
Ω

a(x,∇un) · ∇uχs dx = lim
s→∞

∫
Ω

a(x,∇u) · ∇uχs dx

=

∫
Ω

a(x,∇u) · ∇u dx.
(18)
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By combining (12) and (16)− (18), we conclude that∫
Ω

a(x,∇un) · ∇un dx −→
∫

Ω

a(x,∇u) · ∇u dx as n→∞. (19)

On the other hand, we have ϕ(x, |∇un|) ≥ 0 and ϕ(x, |∇un|) → ϕ(x, |∇u|) a.e. in
Ω, by using the Fatou’s Lemma we obtain∫

Ω

ϕ(x, |∇u|) dx ≤ lim inf
n→∞

∫
Ω

ϕ(x, |∇un|) dx. (20)

Moreover, since a(x,∇un) · ∇un − αϕ(x, |∇un|) ≥ 0 and

a(x,∇un) · ∇un − αϕ(x, |∇un|) −→ a(x,∇u) · ∇u− αϕ(x, |∇u|) a.e. in Ω,

Thanks to Fatou’s Lemma, we get∫
Ω

a(x,∇u) · ∇u− αϕ(x, |∇u|) dx ≤ lim inf
n→∞

∫
Ω

a(x,∇un) · ∇un − αϕ(x, |∇un|) dx,

using (19), we obtain∫
Ω

ϕ(x, |∇u|) dx ≥ lim sup
n→∞

∫
Ω

ϕ(x, |∇un|) dx. (21)

By combining (20) and (21), we deduce∫
Ω

ϕ(x, |∇un|) dx −→
∫

Ω

ϕ(x, |∇u|) dx as n→∞. (22)

In view of Lemma 4.1, we conclude that

ϕ(x, |∇un|) −→ ϕ(x, |∇u|) in L1(Ω), (23)

which finishes our proof.

5. Main results

Let k > 0, we define the truncation function Tk(·) : IR 7−→ IR by

Tk(s) =

{
s if |s| ≤ k,

k
s

|s|
if |s| > k.

Definition 5.1. A measurable function u is called an entropy solution of the quasi-
linear unilateral elliptic problem (11) if

Tk(u) ∈ KΨ for any k > ‖Ψ+‖∞,∫
Ω

a(x,∇u) · ∇Tk(u− v) dx ≤
∫

Ω

fTk(u− v) dx ∀v ∈ KΨ ∩ L∞(Ω).
(24)

Theorem 5.1. Assuming that (7) − (10) hold, and f ∈ L1(Ω), Then, the problem
(11) has a unique entropy solution.

5.1. Existence of entropy solution.
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Step 1 : Approximate problems. Let (fn)n∈IN ∈W−1Eψ(Ω)∩L∞(Ω) be a sequence of
smooth functions such that fn → f in L1(Ω) and |fn| ≤ |f | (for example fn = Tn(f)).
We consider the approximate problem

(Pn)


un ∈ KΨ,∫

Ω

a(x,∇un) · ∇(un − v) dx ≤
∫

Ω

fn(un − v) dx for any v ∈ KΨ ∩ L∞(Ω).

(25)
Let X = KΨ, we define the operator A : X 7−→ X∗ by

〈Au, v〉 =

∫
Ω

a(x,∇u) · ∇v dx ∀v ∈ KΨ.

Using (6), we have for any u, v ∈ KΨ,∣∣∣ ∫
Ω

a(x,∇u) · ∇v dx
∣∣∣ ≤ ∫

Ω

β
(
K(x) + k1ψ

−1
x (ϕ(x, k2|∇u|))

)
|∇v| dx

≤ β
∫

Ω

ψ(x,K(x)) dx+ βk1

∫
Ω

ϕ(x, k2|∇u|) dx+ β(1 + k1)

∫
Ω

ϕ(x, |∇v|) dx.

(26)

Lemma 5.2. The operator A acted from W 1
0Lϕ(Ω) in to W−1Lψ(Ω) = W−1Eψ(Ω) is

bounded and pseudo-monotone. Moreover,A is coercive in the following sense : there
exists v0 ∈ KΨ such that

〈Av, v − v0〉
||v||1,ϕ,Ω

−→∞ as ||v||1,ϕ,Ω →∞ for v ∈ KΨ.

Proof of Lemma 5.2. In view of (26), the operator A is bounded. For the coercivity,
let ε > 0, we have for v0 ∈ KΨ and any v ∈W 1

0Lϕ(Ω)∣∣〈Av, v0〉
∣∣ ≤ ∫

Ω

∣∣a(x,∇v)
∣∣ ∣∣∇v0

∣∣ dx ≤ β ∫
Ω

(K(x) + k1ψ
−1
x (ϕ(x, k2|∇v|)))|∇v0| dx

≤ β
∫

Ω

K(x)|∇v0| dx+ βk1ε

∫
Ω

ψ−1
x (ϕ(x, k2|∇v|))

1

ε
|∇v0| dx

≤ β
∫

Ω

ψ(x,K(x))dx+ β

∫
Ω

ϕ(x, |∇v0|)dx+ βk1ε

∫
Ω

ϕ(x, k2|∇v|) dx

+βk1ε

∫
Ω

ϕ(x,
1

ε
|∇v0|) dx

≤ cε
∫

Ω

ϕ(x, |∇v|)dx+ β(k1ε+ 1)

∫
Ω

ϕ(x, (
1

ε
+ 1)|∇v0|) dx+ C1,

with cε is a constant depending on ε. By taking ε small enough such that cε ≤ α
2 ,

we obtain

〈Av, v0〉 ≤
α

2

∫
Ω

ϕ(x, |∇v|)dx+ β(k1ε+ 1)

∫
Ω

ϕ(x, (
1

ε
+ 1)|∇v0|) dx+ C1.

On the other hand, in view of (10), we have

〈Av, v〉 =

∫
Ω

a(x,∇v) · ∇v dx ≥ α
∫

Ω

ϕ(x, |∇v|) dx.
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Therefore

〈Av, v − v0〉
||v||1,ϕ,Ω

=
〈Av, v〉 − 〈Av, v0〉

||v||1,ϕ,Ω

≥
α

∫
Ω

ϕ(x, |∇v|) dx− α

2

∫
Ω

ϕ(x, |∇v|)dx− β(k1ε+ 1)

∫
Ω

ϕ(x, (
1

ε
+ 1)|∇v0|) dx+ C1

‖v‖1,ϕ,Ω

=

α

2

∫
Ω

ϕ(x, |∇v|) dx− β(k1ε+ 1)

∫
Ω

ϕ(x, (
1

ε
+ 1)|∇v0|) dx+ C1

‖v‖1,ϕ,Ω
−→∞

as ‖v‖1,ϕ,Ω goes to infinity.
It remains to show that A is pseudo-monotone. Let (uk)k be a sequence in W 1

0Lϕ(Ω)
such that 

uk ⇀ u in W 1
0Lϕ(Ω) for σ(ΠLϕ(Ω),ΠEψ(Ω)),

Auk ⇀ χ in W−1Eψ(Ω) for σ(ΠEψ(Ω),ΠLϕ(Ω)),
lim sup
k→∞

〈Auk, uk〉 ≤ 〈χ, u〉.
(27)

We will prove that

χ = Au and 〈Auk, uk〉 → 〈χ, u〉 as k →∞.

Firstly, since W 1
0Lϕ(Ω) ↪→↪→ Eϕ(Ω), then uk → u in Eϕ(Ω) for a subsequence still

denoted (uk)k.
As (uk)k is a bounded sequence in W 1

0Lϕ(Ω) and thanks to the growth condition
(8), it follows that (a(x,∇uk))k is bounded in (Eψ(Ω))N . Therefore, there exists a
function ξ ∈ (Eψ(Ω))N such that

a(x,∇uk) ⇀ ξ in (Eψ(Ω))N for σ(ΠEψ(Ω),ΠLϕ(Ω)) as k →∞. (28)

It is clear that, for all v ∈W 1
0Lϕ(Ω), we have

〈χ, v〉 = lim
k→∞

〈Auk, v〉 = lim
k→∞

∫
Ω

a(x,∇uk) · ∇v dx =

∫
Ω

ξ · ∇v dx. (29)

By using (27) and (29), we obtain

lim sup
k→∞

〈Auk, uk〉 = lim sup
k→∞

∫
Ω

a(x,∇uk) · ∇uk dx ≤
∫

Ω

ξ · ∇u dx. (30)

On the other hand, thanks to (9), we have∫
Ω

(
a(x,∇uk)− a(x,∇u)

)
· (∇uk −∇u) dx ≥ 0, (31)

then∫
Ω

a(x,∇uk) · ∇uk dx ≥
∫

Ω

a(x,∇uk) · ∇u dx+

∫
Ω

a(x,∇u) · (∇uk −∇u) dx.

In view of (28), we have

lim inf
k→∞

∫
Ω

a(x,∇uk) · ∇uk dx ≥
∫

Ω

ξ · ∇u dx
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and (30) yields

lim
k→∞

∫
Ω

a(x,∇uk) · ∇uk dx =

∫
Ω

ξ · ∇u dx. (32)

Combining (29) and (32), we find:

〈Auk, uk〉 → 〈χ, u〉 as k →∞. (33)

In view of (32), we have

lim
k→∞

∫
Ω

(
a(x,∇uk)− a(x,∇u)

)
· (∇uk −∇u) dx→ 0

which implies, thanks to Lemma 4.2, that

uk → u in W 1
0Lϕ(Ω) and ∇uk → ∇u a.e. in Ω,

then

a(x,∇uk) ⇀ a(x,∇u) in (Eψ(Ω))N ,

we deduce that χ = Au, which completes the proof the Lemma 5.2. �

In view of Lemma 5.2, there exists at least one weak solution un ∈ W 1
0Lϕ(Ω) of

the problem (25), (cf. [10], Lemma 6).

Step 2 : A priori estimates. Taking v = un− ηTk(un−Ψ+) ∈W 1
0Lϕ(Ω), for η small

enough we have v ≥ Ψ, thus v is an admissible test function in (25), and we obtain∫
Ω

a(x,∇un) · ∇Tk(un −Ψ+) dx ≤
∫

Ω

fnTk(un −Ψ+) dx,

Since ∇Tk(un −Ψ+) is identically zero on the set {|un −Ψ+| > k}, we can write∫
{|un−Ψ+|≤k}

a(x,∇un) · ∇(un −Ψ+) dx ≤
∫

Ω

fnTk(un −Ψ+) dx ≤ C2k,

with C2 = ‖f‖1, it follows that∫
{|un−Ψ+|≤k}

a(x,∇un) · ∇un dx ≤ C2k +

∫
{|un−Ψ+|≤k}

a(x,∇un) · ∇Ψ+ dx.

Let 0 < λ <
α

α+ 1
, it’s clear that∫

{|un−Ψ+|≤k}
a(x,∇un) · ∇un dx ≤ C2k+ λ

∫
{|un−Ψ+|≤k}

a(x,∇un) · ∇Ψ+

λ
dx. (34)

Thanks to (9), we have∫
{|un−Ψ+|≤k}

(
a(x,∇un)− a(x,

∇Ψ+

λ
)
)
· (∇un −

∇Ψ+

λ
) dx ≥ 0,

then∫
{|un−Ψ+|≤k}

a(x,∇un) · ∇Ψ+

λ
dx ≤

∫
{|un−Ψ+|≤k}

a(x,∇un) · ∇un dx

−
∫
{|un−Ψ+|≤k}

a(x,
∇Ψ+

λ
) · (∇un −

∇Ψ+

λ
) dx.
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