Annals of the University of Craiova Mathematics and Computer Science Series

Vol. XLIV Issue 1, June 2017

Editorial Board

Viorel Barbu, Romanian Academy, Romania
Dumitru Buşneag, University of Craiova, Romania
Philippe G. Ciarlet, French Academy of Sciences, France
Nicolae Constantinescu, University of Craiova, Romania
Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain
Massimiliano Ferrara, Mediterranea University of Reggio Calabria, Italy
George Georgescu, University of Bucharest, Romania
Olivier Goubet, Université de Picardie Jules Verne, France
Ion Iancu, University of Craiova, Romania
Marius Iosifescu, Romanian Academy, Romania
Giovanni Molica Bisci, Mediterranea University of Reggio Calabria, Italy
Sorin Micu, University of Craiova, Romania
Gheorghe Moroşanu, Central European University Budapest, Hungary
Constantin Năstăsescu, Romanian Academy, Romania
Constantin P. Niculescu, University of Craiova, Romania
Patrizia Pucci, University of Perugia, Italy
Vicenţiu Rădulescu, University of Craiova, Romania
Dušan Repovš, University of Ljubljana, Slovenia
Sergiu Rudeanu, University of Bucharest, Romania
Mircea Sofonea, Université de Perpignan, France
Michel Willem, Université Catolique de Louvain, Belgium
Tudor Zamfirescu, Universitat Dortmund, Germany
Enrique Zuazua, Basque Center for Applied Mathematics, Spain

Managing Editor

Mihaela Sterpu, University of Craiova, Romania

Assistant Editor

Mihai Gabroveanu, University of Craiova, Romania

Information for authors. The journal is publishing all papers using electronic production methods and therefore needs to receive the electronic files of your article. These files can be submitted preferably by online submission system:
http://inf.ucv.ro/~ami/index.php/ami/about/submissions by e-mail at office.annals@inf.ucv.ro or by mail on the address:

Analele Universităţii din Craiova, Seria Matematică-Informatică
A. I. Cuza 13

Craiova, 200585, Romania
Web: http://inf.ucv.ro/~ami/

The submitted paper should contain original work which was not previously published, is not under review at another journal or conference and does not significantly overlap with other previous papers of the authors. Each paper will be reviewed by independent reviewers. The results of the reviewing process will be transmitted by e-mail to the first author of the paper. The acceptance of the papers will be based on their scientific merit. Upon acceptance, the papers will be published both in hard copy and on the Web page of the journal, in the first available volume.

The journal is abstracted/indexed/reviewed by Mathematical Reviews, Zentralblatt MATH, SCOPUS. This journal is also included in many digital directories of open resources in mathematics and computer science as Index Copernicus, Open J-Gate, AMS Digital Mathematics Registry, Directory of Open Access Journals, CENTRAL EUROPEAN UNIVERSITY - Catalogue, etc.

Volume Editors: Vicenţiu Rădulescu, Mihaela Sterpu
Layout Editors: Mihai Gabroveanu
ISSN 1223-6934
Online ISSN 2246-9958

Printed in Romania: Editura Universitaria, Craiova, 2017.
http://www.editurauniversitaria.ro
(a): $\varphi(x, \cdot)$ is an N-function, i.e. convex, nondecreasing, continuous, $\varphi(x, 0)=0$, $\varphi(x, t)>0$ for all $t>0$, and :

$$
\lim _{t \rightarrow 0} \sup _{x \in \Omega} \frac{\varphi(x, t)}{t}=0 \quad, \quad \lim _{t \rightarrow \infty} \inf _{x \in \Omega} \frac{\varphi(x, t)}{t}=\infty
$$

$(b): \varphi(\cdot, t)$ is a measurable function.
A function $\varphi(x, t)$ which satisfies conditions (a) and (b) is called a Musielak-Orlicz function.
For every Musielak-Orlicz function $\varphi(x, t)$, we set $\varphi_{x}(t)=\varphi(x, t)$ and let $\varphi_{x}^{-1}(t)$ the reciprocal function with respect to t of $\varphi_{x}(t)$, i.e.

$$
\varphi_{x}^{-1}(\varphi(x, t))=\varphi\left(x, \varphi_{x}^{-1}(t)\right)=t
$$

For any two Musielak-Orlicz functions $\varphi(x, t)$ and $\gamma(x, t)$, we introduce the following ordering:
(c): If there exist two positive constants c and T such that for almost everywhere $x \in \Omega$:

$$
\varphi(x, t) \leq \gamma(x, c t) \quad \text { for } \quad t \geq T
$$

we write $\varphi \prec \gamma$, and we say that γ dominate φ globally if $T=0$, and near infinity if $T>0$.
(d): For every positive constant c and almost everywhere $x \in \Omega$, if

$$
\lim _{t \rightarrow 0}\left(\sup _{x \in \Omega} \frac{\varphi(x, c t)}{\gamma(x, t)}\right)=0 \quad \text { or } \quad \lim _{t \rightarrow \infty}\left(\sup _{x \in \Omega} \frac{\varphi(x, c t)}{\gamma(x, t)}\right)=0
$$

we write $\varphi \prec \prec \gamma$ at 0 or near ∞ respectively, and we say that φ increases essentially more slowly than γ at 0 or near ∞ respectively.
The Musielak-Orlicz function $\psi(x, t)$ complementary to (or conjugate of) $\varphi(x, t)$, in the sense of Young with respect to the variable t, is given by

$$
\begin{equation*}
\psi(x, s)=\sup _{t \geq 0}\{s t-\varphi(x, t)\} \tag{5}
\end{equation*}
$$

and we have

$$
\begin{equation*}
s t \leq \psi(x, s)+\varphi(x, t) \quad \forall s, t \in \mathbb{R}^{+} . \tag{6}
\end{equation*}
$$

The Musielak-Orlicz function $\varphi(x, t)$ is said to satisfy the Δ_{2}-condition if, there exists $k>0$ and a nonnegative function $h(\cdot) \in L^{1}(\Omega)$, such that

$$
\varphi(x, 2 t) \leq k \varphi(x, t)+h(x) \quad \text { a.e. } \quad x \in \Omega,
$$

for large values of t, or for all values of t.
2.2. Musielak-Orlicz Lebesgue spaces. In this paper, the measurability of a function $u: \Omega \mapsto \mathbb{R}$ means the Lebesgue measurability.
We define the functional

$$
\varrho_{\varphi, \Omega}(u)=\int_{\Omega} \varphi(x,|u(x)|) d x
$$

where $u: \Omega \mapsto \mathbb{R}$ is a measurable function. The set

$$
K_{\varphi}(\Omega)=\left\{u: \Omega \longmapsto \mathbb{R} \quad \text { measurable } / \varrho_{\varphi, \Omega}(u)<+\infty\right\}
$$

is called the Musielak-Orlicz class (or the generalized Orlicz class). The MusielakOrlicz spaces (or the generalized Orlicz spaces) $L_{\varphi}(\Omega)$ is the vector space generated
by $K_{\varphi}(\Omega)$, that is, $L_{\varphi}(\Omega)$ is the smallest linear space containing the set $K_{\varphi}(\Omega)$; equivalently

$$
L_{\varphi}(\Omega)=\left\{u: \Omega \longmapsto \mathbb{R} \quad \text { measurable } \quad / \varrho_{\varphi, \Omega}\left(\frac{|u(x)|}{\lambda}\right)<+\infty, \quad \text { for some } \lambda>0\right\} .
$$

In the space $L_{\varphi}(\Omega)$, we define the following two norms:

$$
\|u\|_{\varphi, \Omega}=\inf \left\{\lambda>0 / \int_{\Omega} \varphi\left(x, \frac{|u(x)|}{\lambda}\right) d x \leq 1\right\}
$$

which is called the Luxemburg norm, and the so-called Orlicz norm is given by:

$$
\left\|\left\|u\left|\|_{\varphi, \Omega}=\sup _{\|v\|_{\psi, \Omega} \leq 1} \int_{\Omega}\right| u(x) v(x) \mid d x\right.\right.
$$

where $\psi(x, t)$ is the Musielak-Orlicz function complementary (or conjugate) to $\varphi(x, t)$. These two norms are equivalent on the Musielak-Orlicz space $L_{\varphi}(\Omega)$.

The closure in $L_{\varphi}(\Omega)$ of the bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{\varphi}(\Omega)$. It is a separable space and $\left(E_{\varphi}(\Omega)\right)^{*}=L_{\psi}(\Omega)$.

We have $E_{\varphi}(\Omega)=K_{\varphi}(\Omega)$ if and only if $K_{\varphi}(\Omega)=L_{\varphi}(\Omega)$ if and only if $\varphi(x, t)$ has the Δ_{2}-condition for large values of t, or for all values of t.
2.3. Musielak-Orlicz-Sobolev spaces. We now turn to the Musielak-Orlicz-Sobolev space $W^{1} L_{\varphi}(\Omega)$ (resp. $W^{1} E_{\varphi}(\Omega)$) is the space of all measurable functions u such that u and its distributional derivatives up to order 1 lie in $L_{\varphi}(\Omega)$ (resp. $E_{\varphi}(\Omega)$). Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with nonnegative integers $\alpha_{i},|\alpha|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\ldots+\left|\alpha_{n}\right|$ and $D^{\alpha} u$ denotes the distributional derivatives.
We define the convex modular and the norm on the Musielak-Orlicz-Sobolev spaces $W^{1} L_{\varphi}(\Omega)$ respectively by,

$$
\varrho_{\varphi, \Omega}(u)=\sum_{|\alpha| \leq 1} \varrho_{\varphi, \Omega}\left(D^{\alpha} u\right) \quad \text { and } \quad\|u\|_{1, \varphi, \Omega}=\inf \left\{\lambda>0: \bar{\varrho}_{\varphi, \Omega}\left(\frac{u}{\lambda}\right) \leq 1\right\},
$$

for any $u \in W^{1} L_{\varphi}(\Omega)$.
The pair $\left\langle W^{1} L_{\varphi}(\Omega),\|u\|_{1, \varphi, \Omega}\right\rangle$ is a Banach space if φ satisfies the following condition

$$
\text { there exists a constant } \quad c>0 \quad \text { such that } \inf _{x \in \Omega} \varphi(x, 1) \geq c
$$

The spaces $W^{1} L_{\varphi}(\Omega)$ and $W^{1} E_{\varphi}(\Omega)$ can be identified with subspaces of the product of $n+1$ copies of $L_{\varphi}(\Omega)$. Denoting this product by $\Pi L_{\varphi}(\Omega)$, we will use the weak topologies $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$ and $\sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right)$.

The space $W_{0}^{1} E_{\varphi}(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathrm{D}(\Omega)$ in $W^{1} E_{\varphi}(\Omega)$, and the space $W_{0}^{1} L_{\varphi}(\Omega)$ as the $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$ closure of $\mathrm{D}(\Omega)$ in $W^{1} L_{\varphi}(\Omega)$, (for more details on Musielak-Orlicz-Sobolev spaces we refer to [24]).
2.4. Dual space. Let $W^{-1} L_{\psi}(\Omega)$ (resp. $\left.W^{-1} E_{\psi}(\Omega)\right)$ denotes the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\psi}(\Omega)$ (resp. $E_{\psi}(\Omega)$). It is a Banach space under the usual quotient norm.

If $\psi(x, t)$ has the Δ_{2}-condition, then the space $\mathrm{D}(\Omega)$ is dense in $W_{0}^{1} L_{\varphi}(\Omega)$ for the topology $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi L_{\psi}(\Omega)\right)$ (see corollary 1 of $[9]$).

3. Essential assumptions

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary conditions. Let $\varphi(x, t)$ be a Musielak-Orlicz function and $\psi(x, t)$ the Musielak-Orlicz function complementary (or conjugate) to $\varphi(x, t)$. We assume here that $\psi(x, t)$ satisfying the Δ_{2}-condition near infinity, therefore $L_{\psi}(\Omega)=E_{\psi}(\Omega)$.
We assume that there exists an Orlicz function $M(t)$ such that $M(t) \prec \varphi(x, t)$ near infinity, i.e. there exist two constants $c>0$ and $T \geq 0$ such that

$$
\begin{equation*}
M(t) \leq \varphi(x, c t) \quad \text { a.e. in } \quad \Omega \quad \text { for } \quad t \geq T \tag{7}
\end{equation*}
$$

Let $\Psi(\cdot)$ be a measurable function on Ω, such that

$$
\Psi^{+}(\cdot) \in W_{0}^{1} L_{\varphi}(\Omega) \cap L^{\infty}(\Omega)
$$

and we consider the convex set

$$
K_{\Psi}=\left\{v \in W_{0}^{1} L_{\varphi}(\Omega) \text { such that } v \geq \Psi \text { a.e. in } \Omega\right\}
$$

The Leray-Lions operator $A: D(A) \subset W_{0}^{1} L_{\varphi}(\Omega) \longmapsto W^{-1} L_{\psi}(\Omega)$ given by

$$
A(u)=-\operatorname{div} a(x, \nabla u)
$$

where $a: \Omega \times \mathbb{R}^{N} \longmapsto \mathbb{R}$ is a Carathéodory function (measurable with respect to x in Ω for every ξ in \mathbb{R}^{N}, and continuous with respect to ξ in \mathbb{R}^{N} for almost every x in Ω) which satisfies the following conditions

$$
\begin{gather*}
|a(x, \xi)| \leq \beta\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\xi|\right)\right)\right) \tag{8}\\
\left(a(x, \xi)-a\left(x, \xi^{*}\right)\right) \cdot\left(\xi-\xi^{*}\right)>0 \quad \text { for } \quad \xi \neq \xi^{*} \tag{9}\\
a(x, \xi) \cdot \xi \geq \alpha \varphi(x,|\xi|) \tag{10}
\end{gather*}
$$

for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^{N}$, where $K(x)$ is a nonnegative function lying in $E_{\psi}(\Omega)$ and $\alpha, \beta>0$ and $k_{1}, k_{2} \geq 0$.
We consider the quasilinear unilateral elliptic problem

$$
\begin{cases}-\operatorname{div} a(x, \nabla u)=f & \text { in } \Omega \tag{11}\\ u=0 & \text { in } \partial \Omega\end{cases}
$$

with $f \in L^{1}(\Omega)$. We study the existence of entropy solution in the Musielak-OrliczSobolev spaces.

4. Some technical lemmas

Now, we present some lemmas useful in the proof of our main results.
Lemma 4.1. (see [20], Theorem 13.47) Let $\left(u_{n}\right)_{n}$ be a sequence in $L^{1}(\Omega)$ and $u \in$ $L^{1}(\Omega)$ such that
(i): $u_{n} \rightarrow u$ a.e. in Ω,
(ii): $u_{n} \geq 0$ and $u \geq 0$ a.e. in Ω,
(iii): $\int_{\Omega} u_{n} d x \rightarrow \int_{\Omega} u d x$,
then $u_{n} \rightarrow u$ in $L^{1}(\Omega)$.
Lemma 4.2. Assuming that (8)-(10) hold, and let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1} L_{\varphi}(\Omega)$ such that
(i): $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1} L_{\varphi}(\Omega)$ for $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$,
(ii): $\left(a\left(x, \nabla u_{n}\right)\right)_{n}$ is bounded in $\left(L_{\psi}(\Omega)\right)^{N}=\left(E_{\psi}(\Omega)\right)^{N}$,
(iii): Let $\Omega_{s}=\{x \in \Omega, \quad|\nabla u| \leq s\}$ and χ_{s} his characteristic function, with

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x \longrightarrow 0 \quad \text { as } \quad n, s \rightarrow \infty \tag{12}
\end{equation*}
$$

then $\varphi\left(x,\left|\nabla u_{n}\right|\right) \longrightarrow \varphi(x,|\nabla u|) \quad$ in $\quad L^{1}(\Omega)$ for a subsequence.
Proof. Taking $s \geq r>0$, we have :

$$
\begin{align*}
0 \leq & \int_{\Omega_{r}}\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
& \leq \int_{\Omega_{s}}\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
& =\int_{\Omega_{s}}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x \tag{13}\\
& \leq \int_{\Omega}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x .
\end{align*}
$$

thanks to (12), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega_{r}}\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x=0 \tag{14}
\end{equation*}
$$

Using the same argument as in [15], we claim that,

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { a.e. in } \quad \Omega \tag{15}
\end{equation*}
$$

On the other hand, we have

$$
\begin{gather*}
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x=\int_{\Omega}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \nabla u \chi_{s}\right)\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x \tag{16}\\
\quad+\int_{\Omega} a\left(x, \nabla u \chi_{s}\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x+\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u \chi_{s} d x
\end{gather*}
$$

For the second term on the right-hand side of (16), having in mind that $\psi(x, s)$ verify Δ_{2}-condition, then $L_{\psi}(\Omega)=E_{\psi}(\Omega)$, and thanks to (8) we have $a\left(x, \nabla u \chi_{s}\right) \in$ $\left(E_{\psi}(\Omega)\right)^{N}$. Moreover, we have $\nabla u_{n} \rightharpoonup \nabla u$ weakly in $\left(L_{\varphi}(\Omega)\right)^{N}$ for $\sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right)$, then

$$
\begin{align*}
\lim _{s, n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u \chi_{s}\right) \cdot\left(\nabla u_{n}-\nabla u \chi_{s}\right) d x & =\lim _{s \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u \chi_{s}\right) \cdot\left(\nabla u-\nabla u \chi_{s}\right) d x \\
& =\lim _{s \rightarrow \infty} \int_{\Omega / \Omega_{s}} a(x, 0) \cdot \nabla u d x=0 \tag{17}
\end{align*}
$$

Concerning the last term on the right-hand side of (16), since $\left(a\left(x, \nabla u_{n}\right)\right)_{n}$ is bounded in $\left(E_{\psi}(\Omega)\right)^{N}$ and using (15), we obtain

$$
a\left(x, \nabla u_{n}\right) \rightharpoonup a(x, \nabla u) \quad \text { weakly in } \quad\left(E_{\psi}(\Omega)\right)^{N} \quad \text { for } \quad \sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right)
$$

which implies that

$$
\begin{align*}
\lim _{s, n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u \chi_{s} d x & =\lim _{s \rightarrow \infty} \int_{\Omega} a(x, \nabla u) \cdot \nabla u \chi_{s} d x \tag{18}\\
& =\int_{\Omega} a(x, \nabla u) \cdot \nabla u d x
\end{align*}
$$

By combining (12) and (16) - (18), we conclude that

$$
\begin{equation*}
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \longrightarrow \int_{\Omega} a(x, \nabla u) \cdot \nabla u d x \quad \text { as } \quad n \rightarrow \infty . \tag{19}
\end{equation*}
$$

On the other hand, we have $\varphi\left(x,\left|\nabla u_{n}\right|\right) \geq 0$ and $\varphi\left(x,\left|\nabla u_{n}\right|\right) \rightarrow \varphi(x,|\nabla u|)$ a.e. in Ω, by using the Fatou's Lemma we obtain

$$
\begin{equation*}
\int_{\Omega} \varphi(x,|\nabla u|) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \tag{20}
\end{equation*}
$$

Moreover, since $a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}-\alpha \varphi\left(x,\left|\nabla u_{n}\right|\right) \geq 0$ and

$$
a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}-\alpha \varphi\left(x,\left|\nabla u_{n}\right|\right) \longrightarrow a(x, \nabla u) \cdot \nabla u-\alpha \varphi(x,|\nabla u|) \quad \text { a.e. in } \quad \Omega,
$$

Thanks to Fatou's Lemma, we get

$$
\int_{\Omega} a(x, \nabla u) \cdot \nabla u-\alpha \varphi(x,|\nabla u|) d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n}-\alpha \varphi\left(x,\left|\nabla u_{n}\right|\right) d x
$$

using (19), we obtain

$$
\begin{equation*}
\int_{\Omega} \varphi(x,|\nabla u|) d x \geq \limsup _{n \rightarrow \infty} \int_{\Omega} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \tag{21}
\end{equation*}
$$

By combining (20) and (21), we deduce

$$
\begin{equation*}
\int_{\Omega} \varphi\left(x,\left|\nabla u_{n}\right|\right) d x \longrightarrow \int_{\Omega} \varphi(x,|\nabla u|) d x \quad \text { as } \quad n \rightarrow \infty . \tag{22}
\end{equation*}
$$

In view of Lemma 4.1, we conclude that

$$
\begin{equation*}
\varphi\left(x,\left|\nabla u_{n}\right|\right) \longrightarrow \varphi(x,|\nabla u|) \quad \text { in } \quad L^{1}(\Omega), \tag{23}
\end{equation*}
$$

which finishes our proof.

5. Main results

Let $k>0$, we define the truncation function $T_{k}(\cdot): \mathbb{R} \longmapsto \mathbb{R}$ by

$$
T_{k}(s)=\left\{\begin{array}{ccc}
s & \text { if } & |s| \leq k \\
k \frac{s}{|s|} & \text { if } & |s|>k
\end{array}\right.
$$

Definition 5.1. A measurable function u is called an entropy solution of the quasilinear unilateral elliptic problem (11) if

$$
\left\{\begin{array}{l}
T_{k}(u) \in K_{\Psi} \quad \text { for any } \quad k>\left\|\Psi^{+}\right\|_{\infty}, \tag{24}\\
\int_{\Omega} a(x, \nabla u) \cdot \nabla T_{k}(u-v) d x \leq \int_{\Omega} f T_{k}(u-v) d x \quad \forall v \in K_{\Psi} \cap L^{\infty}(\Omega) .
\end{array}\right.
$$

Theorem 5.1. Assuming that (7) - (10) hold, and $f \in L^{1}(\Omega)$, Then, the problem (11) has a unique entropy solution.

5.1. Existence of entropy solution.

Step 1: Approximate problems. Let $\left(f_{n}\right)_{n \in \mathbb{N}} \in W^{-1} E_{\psi}(\Omega) \cap L^{\infty}(\Omega)$ be a sequence of smooth functions such that $f_{n} \rightarrow f$ in $L^{1}(\Omega)$ and $\left|f_{n}\right| \leq|f|\left(\right.$ for example $f_{n}=T_{n}(f)$). We consider the approximate problem
$\left(P_{n}\right)\left\{\begin{array}{l}u_{n} \in K_{\Psi}, \\ \int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-v\right) d x \leq \int_{\Omega} f_{n}\left(u_{n}-v\right) d x \quad \text { for any } \quad v \in K_{\Psi} \cap L^{\infty}(\Omega) .\end{array}\right.$
Let $X=K_{\Psi}$, we define the operator $A: X \longmapsto X^{*}$ by

$$
\langle A u, v\rangle=\int_{\Omega} a(x, \nabla u) \cdot \nabla v d x \quad \forall v \in K_{\Psi}
$$

Using (6), we have for any $u, v \in K_{\Psi}$,

$$
\begin{align*}
& \left|\int_{\Omega} a(x, \nabla u) \cdot \nabla v d x\right| \leq \int_{\Omega} \beta\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\nabla u|\right)\right)\right)|\nabla v| d x \\
& \quad \leq \beta \int_{\Omega} \psi(x, K(x)) d x+\beta k_{1} \int_{\Omega} \varphi\left(x, k_{2}|\nabla u|\right) d x+\beta\left(1+k_{1}\right) \int_{\Omega} \varphi(x,|\nabla v|) d x \tag{26}
\end{align*}
$$

Lemma 5.2. The operator A acted from $W_{0}^{1} L_{\varphi}(\Omega)$ in to $W^{-1} L_{\psi}(\Omega)=W^{-1} E_{\psi}(\Omega)$ is bounded and pseudo-monotone. Moreover, A is coercive in the following sense : there exists $v_{0} \in K_{\Psi}$ such that

$$
\frac{\left\langle A v, v-v_{0}\right\rangle}{\|v\|_{1, \varphi, \Omega}} \longrightarrow \infty \quad \text { as } \quad\|v\|_{1, \varphi, \Omega} \rightarrow \infty \quad \text { for } \quad v \in K_{\Psi}
$$

Proof of Lemma 5.2. In view of (26), the operator A is bounded. For the coercivity, let $\varepsilon>0$, we have for $v_{0} \in K_{\Psi}$ and any $v \in W_{0}^{1} L_{\varphi}(\Omega)$

$$
\begin{aligned}
\left|\left\langle A v, v_{0}\right\rangle\right| \leq & \int_{\Omega}|a(x, \nabla v)|\left|\nabla v_{0}\right| d x \leq \beta \int_{\Omega}\left(K(x)+k_{1} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\nabla v|\right)\right)\right)\left|\nabla v_{0}\right| d x \\
\leq & \beta \int_{\Omega} K(x)\left|\nabla v_{0}\right| d x+\beta k_{1} \varepsilon \int_{\Omega} \psi_{x}^{-1}\left(\varphi\left(x, k_{2}|\nabla v|\right)\right) \frac{1}{\varepsilon}\left|\nabla v_{0}\right| d x \\
\leq & \beta \int_{\Omega} \psi(x, K(x)) d x+\beta \int_{\Omega} \varphi\left(x,\left|\nabla v_{0}\right|\right) d x+\beta k_{1} \varepsilon \int_{\Omega} \varphi\left(x, k_{2}|\nabla v|\right) d x \\
& \quad+\beta k_{1} \varepsilon \int_{\Omega} \varphi\left(x, \frac{1}{\varepsilon}\left|\nabla v_{0}\right|\right) d x \\
\leq & c_{\varepsilon} \int_{\Omega} \varphi(x,|\nabla v|) d x+\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}
\end{aligned}
$$

with c_{ε} is a constant depending on ε. By taking ε small enough such that $c_{\varepsilon} \leq \frac{\alpha}{2}$, we obtain

$$
\left\langle A v, v_{0}\right\rangle \leq \frac{\alpha}{2} \int_{\Omega} \varphi(x,|\nabla v|) d x+\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}
$$

On the other hand, in view of (10), we have

$$
\langle A v, v\rangle=\int_{\Omega} a(x, \nabla v) \cdot \nabla v d x \geq \alpha \int_{\Omega} \varphi(x,|\nabla v|) d x
$$

Therefore

$$
\begin{aligned}
& \frac{\left\langle A v, v-v_{0}\right\rangle}{\|v\|_{1, \varphi, \Omega}}=\frac{\langle A v, v\rangle-\left\langle A v, v_{0}\right\rangle}{\|v\|_{1, \varphi, \Omega}} \\
& \geq \frac{\alpha \int_{\Omega} \varphi(x,|\nabla v|) d x-\frac{\alpha}{2} \int_{\Omega} \varphi(x,|\nabla v|) d x-\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}}{\|v\|_{1, \varphi, \Omega}} \\
& =\frac{\frac{\alpha}{2} \int_{\Omega} \varphi(x,|\nabla v|) d x-\beta\left(k_{1} \varepsilon+1\right) \int_{\Omega} \varphi\left(x,\left(\frac{1}{\varepsilon}+1\right)\left|\nabla v_{0}\right|\right) d x+C_{1}}{\|v\|_{1, \varphi, \Omega}} \longrightarrow \infty
\end{aligned}
$$

as $\|v\|_{1, \varphi, \Omega}$ goes to infinity.
It remains to show that A is pseudo-monotone. Let $\left(u_{k}\right)_{k}$ be a sequence in $W_{0}^{1} L_{\varphi}(\Omega)$ such that

$$
\left\{\begin{array}{ccc}
u_{k} \rightharpoonup u \text { in } W_{0}^{1} L_{\varphi}(\Omega) & \text { for } & \sigma\left(\Pi L_{\varphi}(\Omega), \Pi E_{\psi}(\Omega)\right) \tag{27}\\
A u_{k} \rightharpoonup \chi \text { in } W^{-1} E_{\psi}(\Omega) & \text { for } & \sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right), \\
\limsup _{k \rightarrow \infty}\left\langle A u_{k}, u_{k}\right\rangle \leq\langle\chi, u\rangle . &
\end{array}\right.
$$

We will prove that

$$
\chi=A u \text { and }\left\langle A u_{k}, u_{k}\right\rangle \rightarrow\langle\chi, u\rangle \text { as } k \rightarrow \infty
$$

Firstly, since $W_{0}^{1} L_{\varphi}(\Omega) \hookrightarrow \hookrightarrow E_{\varphi}(\Omega)$, then $u_{k} \rightarrow u$ in $E_{\varphi}(\Omega)$ for a subsequence still denoted $\left(u_{k}\right)_{k}$.
As $\left(u_{k}\right)_{k}$ is a bounded sequence in $W_{0}^{1} L_{\varphi}(\Omega)$ and thanks to the growth condition (8), it follows that $\left(a\left(x, \nabla u_{k}\right)\right)_{k}$ is bounded in $\left(E_{\psi}(\Omega)\right)^{N}$. Therefore, there exists a function $\xi \in\left(E_{\psi}(\Omega)\right)^{N}$ such that

$$
\begin{equation*}
a\left(x, \nabla u_{k}\right) \rightharpoonup \xi \quad \text { in } \quad\left(E_{\psi}(\Omega)\right)^{N} \quad \text { for } \quad \sigma\left(\Pi E_{\psi}(\Omega), \Pi L_{\varphi}(\Omega)\right) \quad \text { as } \quad k \rightarrow \infty \tag{28}
\end{equation*}
$$

It is clear that, for all $v \in W_{0}^{1} L_{\varphi}(\Omega)$, we have

$$
\begin{equation*}
\langle\chi, v\rangle=\lim _{k \rightarrow \infty}\left\langle A u_{k}, v\right\rangle=\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla v d x=\int_{\Omega} \xi \cdot \nabla v d x \tag{29}
\end{equation*}
$$

By using (27) and (29), we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle A u_{k}, u_{k}\right\rangle=\limsup _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x \leq \int_{\Omega} \xi \cdot \nabla u d x . \tag{30}
\end{equation*}
$$

On the other hand, thanks to (9), we have

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, \nabla u_{k}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{k}-\nabla u\right) d x \geq 0 \tag{31}
\end{equation*}
$$

then

$$
\int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x \geq \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u d x+\int_{\Omega} a(x, \nabla u) \cdot\left(\nabla u_{k}-\nabla u\right) d x
$$

In view of (28), we have

$$
\liminf _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x \geq \int_{\Omega} \xi \cdot \nabla u d x
$$

and (30) yields

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, \nabla u_{k}\right) \cdot \nabla u_{k} d x=\int_{\Omega} \xi \cdot \nabla u d x \tag{32}
\end{equation*}
$$

Combining (29) and (32), we find:

$$
\begin{equation*}
\left\langle A u_{k}, u_{k}\right\rangle \rightarrow\langle\chi, u\rangle \quad \text { as } \quad k \rightarrow \infty . \tag{33}
\end{equation*}
$$

In view of (32), we have

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left(a\left(x, \nabla u_{k}\right)-a(x, \nabla u)\right) \cdot\left(\nabla u_{k}-\nabla u\right) d x \rightarrow 0
$$

which implies, thanks to Lemma 4.2, that

$$
u_{k} \rightarrow u \quad \text { in } \quad W_{0}^{1} L_{\varphi}(\Omega) \quad \text { and } \quad \nabla u_{k} \rightarrow \nabla u \quad \text { a.e. in } \Omega,
$$

then

$$
a\left(x, \nabla u_{k}\right) \rightharpoonup a(x, \nabla u) \quad \text { in } \quad\left(E_{\psi}(\Omega)\right)^{N}
$$

we deduce that $\chi=A u$, which completes the proof the Lemma 5.2.
In view of Lemma 5.2, there exists at least one weak solution $u_{n} \in W_{0}^{1} L_{\varphi}(\Omega)$ of the problem (25), (cf. [10], Lemma 6).

Step 2 : A priori estimates. Taking $v=u_{n}-\eta T_{k}\left(u_{n}-\Psi^{+}\right) \in W_{0}^{1} L_{\varphi}(\Omega)$, for η small enough we have $v \geq \Psi$, thus v is an admissible test function in (25), and we obtain

$$
\int_{\Omega} a\left(x, \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-\Psi^{+}\right) d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-\Psi^{+}\right) d x
$$

Since $\nabla T_{k}\left(u_{n}-\Psi^{+}\right)$is identically zero on the set $\left\{\left|u_{n}-\Psi^{+}\right|>k\right\}$, we can write

$$
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-\Psi^{+}\right) d x \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-\Psi^{+}\right) d x \leq C_{2} k
$$

with $C_{2}=\|f\|_{1}$, it follows that

$$
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq C_{2} k+\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla \Psi^{+} d x .
$$

Let $0<\lambda<\frac{\alpha}{\alpha+1}$, it's clear that

$$
\begin{equation*}
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq C_{2} k+\lambda \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \frac{\nabla \Psi^{+}}{\lambda} d x \tag{34}
\end{equation*}
$$

Thanks to (9), we have

$$
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}}\left(a\left(x, \nabla u_{n}\right)-a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right)\right) \cdot\left(\nabla u_{n}-\frac{\nabla \Psi^{+}}{\lambda}\right) d x \geq 0
$$

then

$$
\begin{aligned}
\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \frac{\nabla \Psi^{+}}{\lambda} d x \leq & \int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \nabla u_{n}\right) \cdot \nabla u_{n} d x \\
& -\int_{\left\{\left|u_{n}-\Psi^{+}\right| \leq k\right\}} a\left(x, \frac{\nabla \Psi^{+}}{\lambda}\right) \cdot\left(\nabla u_{n}-\frac{\nabla \Psi^{+}}{\lambda}\right) d x .
\end{aligned}
$$

