
 --

ANNALS
OF THE

UNIVERSITY OF CRAIOVA
 Series: AUTOMATION, COMPUTERS,

 ELECTRONICS and MECHATRONICS

Vol. 15 (42), No. 1, 2018
ISSN 1841-0626

 --

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: AUTOMATION, COMPUTERS, ELECTRONICS AND MECHATRONICS

Vol. 15 (42), No. 1, 2018 ISSN 1841-0626

Note: The “Automation, Computers, Electronics and Mechatronics Series” emerged

from “Electrical Engineering Series” (ISSN 1223-530X) in 2004.
Honorary Editor:

Vladimir RĂSVAN – University of Craiova, Romania

Editor-in-Chief:

Liana STĂNESCU – University of Craiova, Romania

Associate Editors-in-Chief:

Marius BREZOVAN – University of Craiova, Romania

Dorian COJOCARU – University of Craiova, Romania

Dan SELIȘTEANU – University of Craiova, Romania

Editorial Board:

Costin BĂDICĂ – University of Craiova, Romania

Andrzej BARTOSZEWICZ – Institute of Automatic Control, Technical University of Lodz, Poland

Nicu BÎZDOACĂ – University of Craiova, Romania

David CAMACHO – Universidad Autonoma de Madrid, Spain

Kazimierz CHOROS – Wroclaw University of Technology, Poland

Ileana HAMBURG – Institute for Work and Technology, FH Gelsenkirchen, Germany

Mirjana IVANOVIC – University of Novi Sad, Serbia

Mircea IVĂNESCU – University of Craiova, Romania

Vladimir KHARITONOV – University of St. Petersburg, Russia

Peter KOPACEK – Institute of Handling Device and Robotics, Vienna University of Technology,
Austria

Rogelio LOZANO – CNRS – HEUDIASYC, France

Dan Bogdan MARGHITU – Auburn University, Alabama, USA

Marius MARIAN – University of Craiova, Romania

Mihai MOCANU – University of Craiova, Romania

Sabine MONDIÉ – CINVESTAV (Department of Automatic Control), Mexico

Ileana NICOLAE – University of Craiova, Romania

Silviu NICULESCU – CNRS – SUPELEC (L2S), France

Mircea NIŢULESCU – University of Craiova, Romania

Sorin OLARU – CNRS – SUPELEC (Automatic Control Department), France

Octavian PASTRAVANU – “Gheorghe Asachi” Technical University of Iasi, Romania

Emil PETRE – University of Craiova, Romania

Dan PITICĂ – Technical University of Cluj-Napoca, Romania

Dan POPESCU – University of Craiova, Romania

Elvira POPESCU – University of Craiova

Radu-Emil PRECUP – “Politehnica” University of Timisoara, Romania

Dorina PURCARU – University of Craiova, Romania

Monica ROMAN – University of Craiova

Dan STOIANOVICI – Johns Hopkins University, Baltimore, Maryland, USA

Dorin ŞENDRESCU – University of Craiova

Sihem TEBBANI – CNRS – SUPELEC (Automatic Control Department), France

Editorial Secretary: Lucian BĂRBULESCU – University of Craiova, Romania

Address for correspondence: Liana STĂNESCU

University of Craiova, Faculty of Automation, Computers and Electronics

Al.I. Cuza Street, No. 13, RO-200585, Craiova, Romania

Phone: +40-251-438198, Fax: +40-251-438198

Email: stanescu@software.ucv.ro

We exchange publications with similar institutions from country and from abroad

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018

__

5

Design of Three-Dimensional Museum-Like Environment by using Virtual

Reality

Andrei O. Dragomirescu, Florin Stinga

Automation and Electronics Department, University of Craiova

Craiova, Romania (e-mail: andreid93@gmail.com, florin@automation.ucv.ro)

Abstract: This paper showcases the production steps undertaken in the creation process of a

three-dimensional, virtual museum-like environment, accomplished using the cross-platform

Unity 3D and the aid of a third-party mixture of media production and editing tools. The

consequent goal of the process is creating a commercial application available to users

operating on a Microsoft Windows environment or (and) a mobile device running a version of

the Android operating system.

Keywords: Virtual museum environment, Unity 3D, Virtual Reality, Windows application,

Android application

1. INTRODUCTION

This paper covers the main stages of creating a

museum-like environment embedded as application

used by any human user on a Windows or Android

operating system platform. Over the last years, the

field of virtual world design is a new area of research

without a strong theoretical or methodological

foundation (Jakobsson, (2018)).

Virtual reality uses a set a technique that artificially

creates immersive sensory experience of physical

presence in places in the real or imagined world, allows

the interaction between the user and that world (Ferrari

and Medici, (2017)). This technique has been applied in

many areas of science and visual communication, such as

restoration of cultural relics, indoor decoration design,

landscape design and so on, allowing access from

different places and times, even that the original sites are

temporal or geographical inaccessible to the human users

(Ferrari and Medici, (2017), Yubin and Yufen, (2014),

Higgins et al., (1996), Maietti et al.(2017)).

The showcased application is one depicting a medieval

settlement, structured in such fashion to allow the final

user to traverse the medium in a free manner, immersing

himself in a museum-like, three-dimensional virtual

representation with the extended possibility of virtually

guiding said user. The application developed implies the

mixed usage of several applications, used in media

creation and editing processes, whose results can and are

introduced in the main engine at every step in the

development process.

This work was supported by a grant of the Romanian National Authority for
Scientific Research and Innovation, CCCDI–UEFISCDI, project number 78 BM.

Unity 3D is the main engine used to produce the virtual

environment, the graphical and programmable medium, in

order to embed the externally developed assets, and the

final rendering tool used in the building process (Unity

3D, (2018)). Despite the fact that Unity is an integrated

environment capable of offering all the necessary tools

required to produce inside the engine itself, several other

software third-packages are utilized in the presented

application in this article, with the sole goal of creating a

virtual medium as realistically close as possible. The

current graphical capabilities of the computational

hardware in today’s world makes such objectives quite

reachable and not that difficult to implement and run

natively on several platforms, whether they seem to be a

bulky tower personal computer, or a small smartphone

tucked in one of your pockets. The complementary

software packages used in the process of development are

as follows: 3DS Max (3DS Max, (2018)), Ableton Live

(Ableton Live, (2018)), Adobe Photoshop (Adobe

Photoshop (2018)), FMOD Studio (FMod Studio, (2018)),

SpeedTree (SpeedTree, (2018)).

An important aspect that requires mentioning, is that the

programming, although implementable in various ways

and languages in the Unity Engine, is done extensively in

C# (C Sharp), due to its versatile way of approaching

object-oriented programming and the various advantages

related to the integration with the .NET Framework and

its application programming interface.

This article is structured as following: In Section 2 both

the medium development and the control solution utilized

in the traversal of the virtual environment is summarily,

for both Windows and Android operating systems,

showcasing the slight variations in the input and response

of the developed system-based applications, Section 3

describes the process of creation and implementation of

the layers and assets used for the virtual immersion of the

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018
__

6

user in the virtual medium, in Section 4 the integration of

all the previously developed elements into a built and

executable, end-user application, is introduced, and

Section 5 presents conclusions from the presented studies.

2. VIRTUAL MEDIUM

Both the medium’s various terrain and architectural

representations and its control scheme used in the

traversal of said medium, are structured in the Unity

project hierarchy as “Assets”. These assets can be

regarded as components and game objects, and can range

from the three dimensional medium itself, all the way to

the architectural elements and the virtual foliage

representations. The terrain component can quite easily be

instantiated as a sterile three-dimensional plain, devoid of

any other elements that will be added at future steps in the

process. Unity has an integrated set of tools that will

allow an in-depth shaping of the terrain, to its utmost

finest detail, offering the possibility of creating quite a

realistically (or if desired, a surreal) representation of

landforms. A quick visual example of the afore mentioned

can be observed in the Figures 1 and 2, captured in order

to showcase the intermediary and final results of the

creation, shaping and texturing of the terrain-

environmental elements.

Unity offers the capability of using a mixture of textured

graphical elements, from both inside the included Unity

packages and external sources. Several such terrain and

architectural textures are introduced into the project and

used after several subsequent editing steps in Adobe

Photoshop, as it shown in Figure 3. The control solution

implemented, just as the previous elements, is structured

as a game object. More specifically, this object implies an

implementation of a parent-child like relationship

between two assets. The two assets are categorized as:

FPC – The First-Person Controller: In this scenario, the

parent of the group, responsible for the scripting aspects

of the control solution and the process of control

regarding the collisions and behavioural interactions with

other elements present in the virtual medium.

Fig.1: Running in - Engine Intermediary Terrain Preview

Fig. 2: Final reference of the virtual medium in Unity

Fig. 3: Graphical elements editing done in Photoshop

Camera – The child, positioned at the “eye-level” of the

control object, used as a point of view for the end user.

In Unity, programming and modification of the scripting

elements is achieved mainly in the Microsoft

development environment, Visual Studio Basic (Visual

Studio, (2018)), bundled together with the initial

installation of the Unity client (C# code extract)

(Dragomirescu, (2018)):

//...

if (m_CharacterController.velocity.sqrMagnitude > 0 &&

(m_Input.x != 0 || m_Input.y != 0)){

m_StepCycle+=(m_CharacterController.velocity.magnitude+

(speed*(m_IsWalking ? 1f : m_RunstepLenghten)))*

Time.fixedDeltaTime;}

if (!(m_StepCycle > m_NextStep)){

return;}

m_NextStep = m_StepCycle + m_StepInterval;

PlayFootStepAudio();}

private void PlayFootStepAudio(){

if (!m_CharacterController.isGrounded){

return;}

//…

if(m_CharacterController.velocity.magnitude>0&&m_Characte

rController.isGrounded){

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018

__

7

m_Camera.transform.localPosition=m_HeadBob.DoHeadBob

(m_CharacterController.velocity.magnitude +

(speed*(m_IsWalking ? 1f : m_RunstepLenghten)));

newCameraPosition = m_Camera.transform.localPosition;

newCameraPosition.y = m_Camera.transform.localPosition.y -

m_JumpBob.Offset();}

//…

Due to the variations of the input offered by the Windows

platform, which implies the usage of keyboard-mouse

combination or other controllers, and the compact devices

running an Android operating system (like smartphones

and tablets), which use a touch input, the control solution

needs to possess a platform specific set of instructions,

that will execute only on the specific platform the

application is built for. The previously mentioned,

programmable component present in the FPC, can be

carefully modified to the extent of allowing and executing

platform specific code in order to satisfy the needs for

multi-platform application development (C# code extract)

(Dragomirescu, (2018)):

//...

if(!FindObjectOfType<EventSystem>()){

GameObject obj = new GameObject("EventSystem");

obj.AddComponent<EventSystem>();

obj.AddComponent<StandaloneInputModule>().forceModuleAc

tive = true;}

//…

namespace

UnityStandardAssets.CrossPlatformInput.PlatformSpecific

{public class StandaloneInput : VirtualInput{

public override float GetAxis(string name, bool raw){

return raw ? Input.GetAxisRaw(name) : Input.GetAxis(name);}

public override bool GetButton(string name){

return Input.GetButton(name);}

public override bool GetButtonDown(string name){

return Input.GetButtonDown(name);}

public override bool GetButtonUp(string name){

return Input.GetButtonUp(name);}

//…

The Android version of the developed application has an

additional graphical layer, of visual toggles, that

implements equivalent controllable functions available on

the keyboard and mouse version of the application.

Combining the two developed assets and packaging them

in an executable fashion at this point in the development

process, will allow the developer, artists, programmers

and testers, to have a general idea regarding the

possibilities and limits of the following developmental

steps, and assure the quality of the previous and future

steps that must be implemented.

3. IMMERSION

Unity allows its developers to both develop many re-

usable assets inside the engine itself, or import externally

developed assets, from its own Store, the Unity Asset

Store or elsewhere. Game objects that are developed to be

easily re-used are referred to as Prefabs (Prefabricated

Objects). The prefabs are essentially templates of game

objects that can be easily instantiated and quickly

modified in other to create variations of the previously

developed assets. Immersion is an experience in one

moment in time involves a lack of awareness of time, a

loss of awareness of the real world, involvement and a

sense of being in the task environment (Jennete et. al,

(2008)). An immersive world, even a virtual one, requires

variation in its implementation of visually related

elements. A quite repeatable visual pattern of the same

graphical elements can detract from the experience and

lower the quality desired by the developer’s previously

set objectives. The prefab concept can be quite the helpful

solution to tackle such an issue.

Prefabricated elements can vary wildly from a

complexity’s standpoint in the developed application, but

in itself the process of creating and modifying such an

element remains fundamentally the same, whether

implemented piece by piece inside Unity or in a third-

party software (e.g. 3DS Max) and then imported in

Unity. The Figures 4-7 shows the steps followed for one

such asset inside the Unity engine.

Fig 4: Prefab Step 1 – Creating the sub - components

Fig 5: Prefab Step 2 – Attaching graphical meshes

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018
__

8

Fig 6: Prefab Step 3 – Arranging of resulted components

Fig 7: Prefab Step 4 – Grouping components as a Prefab

The usage of the prefabricated elements can be taken to

new levels, when its implementation is brought to a

smaller, detail-oriented application on objects used to

populate the environment, in order to create a museum-

like visual medium.

In the current application, the goal was to simulate a

historical medieval setting, so the result is modelled to

appear like an architecturally realistic setting that could

have theoretically been populated at one point in the past

as presented in Figures 8 and 9.

To further increase the quality and immersion of the

virtual world, several other operations such as adding

elements of foliage and the implementation of auditory

elements are introduced.

Auditory elements are introduced into the Unity project

with the combined help of the following software

packages: Ableton Live 9 and FMOD Studio (see Figures

11 and 12).

Foliage is implemented through SpeedTree (see Figure

10). In itself the process of creating the foliage elements

is quite easy to grasp and implement. The structure of

each element is usually an inter-linked list of generated

constructive elements, textured appropriately to resemble

a realistic (or if desired, a surreal), equivalent of a real-

life foliage element. The composition and editing of the

used auditory elements are done entirely inside the digital

audio workstation, Live 9, and subsequently imported into

FMOD Studio as high-fidelity, sequenced audio files.

Fig. 8: Virtual Medium – Outdoors Medieval Setting

Fig. 9: Virtual Medium – Indoors Medieval Setting

Fig. 10: Foliage elements done in SpeedTree

Then, these files are programmed via C# scripts inside the

Unity project itself. FMOD acts as an intermediary, which

allows high quality conditioned playback of the audio

files, according to the rules and sets of instructions set in

the afferent Unity project.

4. BUILDING

In the Unity environment, the final step that needs to be

undertaken in order to finalize the project and obtain a

structured installer file (in the case of an Android build),

or an executable file (in the case of a Windows build).

Building options vary from platform to platform. Each

and every build implements some lesser or higher quality

form of texture compression, based on Unity texture

ANNALS OF THE UNIVERSITY OF CRAIOVA
Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018

__

9

compression algorithms. The lack of applied compression

is also an available option, should this be the desired

outcome. In Figure 13 is presented the Build Menu inside

Unity Engine.

Fig 11: The Ableton Live environment – the musical

score composition and the signal processing done on one

of its generated tracks.

Fig 12: FMOD Interface – High fidelity audio files are

structured and sequenced according to the desired

programmable structure

Whilst the building process of a Windows version is quite

straightforward, requiring only the selection of the Build

option, the Android built will require an automated

conversion of the used assets, using the Android SDK

(Software Development Kit), alongside its afferent app-

developing software package, Android Studio.

The engine offers building for many platforms, not just

Windows/Android. Unity allows building for commercial

hardware platforms such as iOS, Mac, Linux, Sony

PlayStation, Xbox One, Oculus Rift, Steam VR and even

TV’s powered by the Android and Apple operating

systems alongside many other more.

The developed application for the Android operating

system can be installed and ran not just smartphones but

on Android TV’s just as effectively, but this

implementation would most likely require an additional

set of control instructions, specific to the TV operating

system environment.

As previously mentioned the application described is built

for both the Windows and Android operating systems.

Fig 13: The Build Menu inside Unity Engine

Fig. 14: The final Android interface implemented on a

mobile device

In Figure 14 is presented the final Android interface of

the developed application.

While the Windows version is not concerned with

trivial aspects such as texture compression due to

higher powered systems that usually run Windows as

an operating system, the Android version has applied

on itself a form of light compression that will maintain

a very close high-fidelity look, just as its Windows

equivalent. This is introduced due to subjective

observations, regarding the implementation of a more

optimized high-frame per second functionality on

mobile devices and may be detrimental to users whom

value the visual aspects more than an optimal

performance and a lower battery consumption on their

mobile Android devices.

5. CONCLUSIONS

In this paper were presented the main stages of creating a

medieval settlement, structured in such fashion to allow

the final user to traverse the medium in a free manner,

immersing himself in a museum-like, three-dimensional

virtual representation, embedded as an application usable

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018
__

10

by any human user on a Windows or Android operating

system platforms.

Virtual reality is a technique used in presentation of a

heritage application allowing access from different times,

even that the original sites are temporal inaccessible to the

human users.

Despite the rather complicated approach used in the

development of this application, using Unity 3D and

several third-party software packages, a virtual medium

as realistically close as possible is created.

6. REFERENCES

3DS Max, Autodesk Inc., available on-line at

https://www.autodesk.com/products/3ds-

max/overview, 2018.

Ableton Live, Ableton AG, available on-line at

https://www.ableton.com/en, 2018.

Adobe Photoshop, Adobe Inc., available on-line at

https://www.adobe.com/ro/products/photoshop.html,

2018.

Dragomirescu A., Aplicație in Unity 3D, Graduated

Thesis, Faculty of Automation, Computers and

Electronics, University of Craiova, 2018.

Ferrari F. and Medici M., The Virtual Experience for

Cultural Heritage: Methods and Tools Comparison for

Geguti Palace in Kutaisi, Georgia, Proceedings of

International and Interdisciplinary Conference

IMMAGINI? Brixen, Italy, 2017.

FMod Studio, Firelight Technologies Pty Ltd., available

on-line at https://www.fmod.com, 2018.

Higgins T., Main P., Lang J., Imaging the Past: Electronic

Imaging and Comouter Graphics in Museums and

Archaeology, British Museum, UK, 1996.

Jakobsson M., A virtual realist primer to virtual world

design, available on-line at

http://www8.informatik.umu.se/~mjson/files/primer.p

df, 2018.

Jennete C., Cox A., Cairns P., Dhoparee A., Epps A., Tijs

T. and Walton A., Measuring and Defining the

Experience of Immersion in Games, International

Journal of Human-Computer Studies 66(9):641-661,

2008.

Maietti F., Di Giuliom R., Balzani M., Piaia E., Medici

M., Ferrari F., Digital Memory and Integrated Data

Capturing: Innovations for an Inclusive Cultural

Heritage in Europe through 3D Semantic Modelling,

In Mixed Reality and Gamification for Cultural

Heritage, Springer, Berlin, pp. 225-244, 2017.

SpeedTree, IDV Inc., available on-line at

https://store.speedtree.com, 2018.

Unity Technologies, Unity 3D, available on-line at

https://unity3d.com, 2018.

Visual Studio, Microsoft Corporation, available on-line at

https://visualstudio.microsoft.com, 2018.

Yubin L. and Yufen F., The virtual reality tehnique of

lanscape arhitecture reconstruction, BioTechnology

Journal, 10(11), pp. 5226-5233, 2014.

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018
__

11

Automotive Application for Collision Avoidance

Florina Luminița Besnea*, Ștefan-Irinel Cismaru**

* Department of Mechatronics and Robotics, University of Craiova

Craiova, Romania (e-mail: besnea.florina@yahoo.com)

** Department of Automatic Control and Electronics, University of Craiova

Craiova, Romania (e-mail:cisstefan@gmail.com)

Abstract: Car transport is crucial for society and has grown in terms of both number and

complexity of the vehicles, their interaction and the traffic situation. The emergence of the

technology focuses mainly on reducing human effort in every field. This paper proposes the

development of an automated, easy-to-integrate and cost-effective electronic system model that

will help reduce collisions. The developed system can be considered as a step towards

minimization of mental and physical efforts made by the driver to control the vehicle safely.

Collision avoidance is a research area that has become more relevant in recent years as the

vehicles have been improved by adding driving assistant systems.

Keywords: automotive, car, electronics, sensorics, collision.

1. INTRODUCTION

Advanced driver assistance systems are developed to

automate, adapt and improve vehicle systems for safety

and a better driving manner. The automotive safety

system's journey begins in 1901 with the Oldsmobile

Curved-Dash, which offered a foot brake by direct

pressure of a rail on the transmission shaft.

The vehicle has been used as a means of transport over

100 years. A few decades ago, electronic technologies

and sensors were introduced to vehicles as intelligent

steering assistance systems. This kind of system helps

drivers in guidance for safety and comfort. Smart

systems offer great potential for future mobility.

Several sources indicate that the benefits of intelligent

driver assistance systems are significant. The sensors

monitor the driving circumstances and detect

dangerous events, filling the sense of vision, distance

and orientation of the human being.

A large part of the total vehicle accidents is due to the

lack or decrease in the concentration of the drivers during

the operation of the vehicles. Some drivers tend to handle

distracting activities such as radio tuning, eating, talking

to passengers or, the most common, making and taking

phone calls. Other drivers find it difficult to focus only on

driving, for example because of fatigue and health

problems. Elderly drivers may experience difficulties in

personal mobility, making it more difficult to constantly

monitor the vehicle's perimeter. They can also develop

other conditions that have a negative impact on their

ability to focus on the road.

Failure to identify a vehicle on the side of the car, as

known as the blind-spot, is still a cause of the increasing

number of accidents. For some drivers, the simple

solution is to place an additional side mirror. However,

this is not the best solution because these additional side

mirrors do not give an accurate picture of the actual or

estimated distance to an object or other vehicle.

Today's vehicles are in a much better position from the

point of view of safety, but unfortunately today drivers

have at their disposal different devices that distract them

when handling a car, causing more and more challenges

in terms of avoiding possible collisions in traffic.

2. RELATED STUDIES

The main trends of today are oriented towards the effort

for efficient transport combined with managing the high

demands of society in terms of transport safety. Official

accident statistics show that the number of vehicles and

accidents has increased over the last 50 years. Automotive

safety systems and applications play an important role,

with the predisposition for modern cars to become 5%

safer each year.

Road safety statistics for 2016, published by the European

Commission, show a 2% decrease in the number of deaths

registered in the EU last year. In 2017, 25,500 people

were killed in road accidents in the EU, 600 fewer than in

2015 and 6,000 fewer than in 2010. Other 135,000 people

suffered serious injuries, according to Commission

estimates. This statistic shows the increase in population

awareness for automotive applications and systems that

are based on detecting or preventing an accident.

However, Romania is on the penultimate place in terms of

the number of people killed in road accidents per one

million inhabitants. Thus, Romania recorded 97 deaths

per million, being overtaken only by Bulgaria, with 99

deaths per million.

From the annual publication of the National Institute of

Statistics on road traffic accidents involving persons

ANNALS OF THE UNIVERSITY OF CRAIOVA

Series: Automation, Computers, Electronics and Mechatronics, Vol. 15 (42), No. 1, 2018
__

12

under the influence of alcohol in 2017, it appears that in

Romania there have been 3801 accidents that have

resulted in death or injury to one or more persons. Of this

number, the number of accidents involving directly car

drivers was 1688.

The study shows that the most frequent road accidents

involving vehicles are produced in rural areas in 55%,

in urban areas 37%, and on motorways they cover an

8% pricing.

3. COLLISION OVERVIEW

Collision is an event in which two or more bodies exert

their forces on each other within a relatively short period

of time. A traffic collision is called a collision with a

motor vehicle collision (MVC) and occurs when a vehicle

collides with another vehicle, pedestrian, animal, roadside

remnants or other stationary objects such as a tree or a

pillar (Jonas Jansson 2005). These collisions often result

in injuries, deaths, and material damage.

A number of factors contribute to the collision risk,

including vehicle design, operating speed, road design,

road environment and driver qualification. Worldwide,

collisions with cars lead to death and disability, as well as

financial costs for both the company and the people

involved in such attacks.

2.1 Collision stages

The pre-impact period is called an ante-collision stage

where there is no contact between cars. It is delineated in

time from the initial moment of impact and the moment

of triggering the imminent danger, the main objective

being to assess the possibilities of avoiding the accident.

The collision stage occurs at the time of first contact

between the vehicles and the moment of their separation.

In this phase of collision the deformation energy is

obtained from the kinetic energy, the contact between the

vehicles having two different phases: compression and

restitution.

The post-collision stage is triggered when the cars are

separated and lasts until they are stopped.

The blind-spot is the area around the car that cannot be

directly observed by the driver during driving.

2.2 The blind-spot

Blind-spots are found in several categories of vehicles:

cars, ships and aircraft. Correctly adjusting the mirrors

and using technical solutions can eliminate or attenuate

the blind-spot.

It has been statistically proven that many accidents occur

when changing the lane when an overtaking manoeuvre is

initiated, and on the relevant lane there is already another

overtaken vehicle.

Checking with rear-view mirrors without checking a

blind-spot is not enough. It should be noted that if a

vehicle is located at a very narrow distance on the left or

right, it may be in the mirror area that suffers from lack of

visibility. Blind-spot checking lasts a few fractions of a

second, and the prolonged viewing of the angle at this

point is dangerous due to the rapid change in traffic. In

order to avoid such a dangerous situation, certain collision

detection and prevention systems have been developed in

the dead corner.

2.3 The side collision

The blind-spot monitoring system continuously scans

both sides of the vehicle with ultrasonic sensors and

warns the driver when another vehicle is in the detection

area. The scanned area is always larger than the blind-

spot area itself. The detection area starts at 40 cm from

the vehicle at the level of the rear-view mirror.

The side collision detection sensors operate on the same

principle as the front collision with the indication that the

measures applied in case of detection are not as severe.

4. SYSTEM DEVELOPMENT

Each ultrasonic sensor is interfaced with Arduino to

determine the distance to the obstacles.

Fig.1 System block diagram

Circuit design, simulation, and block diagram are

used to explain the processes involved during the

project to achieve the objectives. The block diagram

completely covered the process, from the ultrasonic

sensor to the system.

The block diagram shows how an object is detected by

the Arduino Mega 2560 by means of ultrasonic sensors

and the actions taken by it are based on the detected

	Prima paginaAutomatica Anale_2014_vol 11_nr 2_cu paginatie - embedded.pdf
	Blank Page
	Blank Page

