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Dumitru Buşneag, University of Craiova, Romania

Philippe G. Ciarlet, French Academy of Sciences, France

Nicolae Constantinescu, University of Craiova, Romania

Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain

Massimiliano Ferrara, Mediterranea University of Reggio Calabria, Italy

George Georgescu, University of Bucharest, Romania
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Analele Universităţii din Craiova. Seria Matematică -Informatică
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Several characterizations of the 4–valued modal algebras

Aldo Victorio Figallo and Paolo Landini

Abstract. A. Monteiro, in 1978, defined the algebras he named tetravalent modal algebras,
that will be called 4−valued modal algebras in this work. These algebras constitute a gener-

alization of the 3−valued Lukasiewicz algebras defined by Moisil.
The theory of the 4−valued modal algebras has been widely developed by I. Loureiro in

[6, 7, 8, 9, 10, 11, 12] and by A. V. Figallo in [2, 3, 4, 5].
J. Font and M. Rius indicated, in the introduction to the important work [1], a brief but

detailed review on the 4−valued modal algebras.
In this work varied characterizations are presented that show the “closeness” this variety

of algebras has with other well–known algebras related to the algebraic counterparts of certain
logics.

2010 Mathematics Subject Classification. Primary 06D99; Secondary 06D30.

Key words and phrases. De Morgan algebras, tetravalente modal algebras, three–valued
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1. Introduction

In 1940 G. C. Moisil [13] introduced the notion of three–valued �Lukasiewicz algebra.
In 1963, A.Monteiro [14] characterized these algebras as algebras 〈A,∧,∨,∼,�, 1〉 of
type (2, 2, 1, 1, 0) which verify the following identities:
(A1) x ∨ 1 = 1,
(A2) x ∧ (x ∨ y) = x,
(A3) x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x),
(A4) ∼∼ x = x,
(A5) ∼ (x ∨ y) =∼ x∧ ∼ y,
(A6) ∼ x ∨ �x = 1,
(A7) x∧ ∼ x =∼ x ∧ �x,
(A8) �(x ∧ y) = �x ∧ �y.
L.Monteiro [15] proved that A1 follows from A2, · · · , A8, and that A2, · · · , A8, are
independent.

From A2, · · · , A5 it follows that 〈A,∧,∨,∼, 1〉 is a De Morgan algebra with last
element 1 and first element 0 =∼ 1.

In Lemma 1.1 we will indicate other properties valid in the variety of 4–valued
modal algebras necessary for the development that follows.

Lemma 1.1. In every 4-valued modal algebra 〈A,∧,∨,∼,�, 1〉 we have : A9-A17.
(A9) x ≤ ∇x,
(A10) ∇1 = 1,
(A11) ∇x ≤ ∇∇x,
(A12) ∇x∨ ∼ ∇x = 1,
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(A13) ∇x∧ ∼ ∇x = 0,
(A14) ∇∇x = ∇x,
(A15) If x ≤ y, then ∇x ≤ ∇y,
(A16) ∇(∇x ∨ ∇y) = ∇(x ∨ y),
(A17) ∇x ∨ ∇y = ∇(x ∨ y),

the proof of which we will indicate in the section that follows.
In 1969 J. Varlet [16] characterized three–valued �Lukasiewicz algebras by means of

other operations. Let 〈A,∧,∨, ∗,+, 0, 1〉 be an algebra of type (2, 2, 1, 1, 0, 0) where
〈A,∧,∨, 0, 1〉 is a bounded distributive lattice with least element 0, greatest element
1 and the following properties are satisfied:
(V1) x ∧ x∗ = 0,
(V2) (x ∧ y)∗ = x∗ ∧ y∗,
(V3) 0∗ = 1,
(V4) x ∨ x+ = 1,
(V5) (x ∨ y)+ = x+ ∧ y+,
(V6) 1+ = 0,
(V7) If x∗ = y∗ and x+ = y+, then x = y.

About these algebras he proved that it is posible to define, in the sense of [14, 15]
a structure of three-valued �Lukasiewicz algebra by taking ∼ x = (x ∨ x∗) ∧ x+ and
�x = x∗∗.

Furthermore it holds x∗ =∼ �x and x+ = � ∼ x. Therefore three–valued
�Lukasiewicz are double Stone lattices which satisfy the determination principle V7.
Moreover V7 may be replaced by the identity

(x ∧ x+) ∧ (y ∨ y∗) = x ∧ x+.

Later, in 1963, A. Monteiro [14] considered the 4–valued modal algebras
〈A,∧,∨,∼,�, 1〉 of type (2, 2, 1, 1, 0) which satisfy A2, · · · , A7 as an abstraction of
three–valued �Lukasiewicz algebras.

In this paper we give several characterizations of the 4–valued modal algebras. In
the first one we consider the operations ∧,∨,¬,Γ, 0, 1 where ¬x =∼ �x, Γx = � ∼ x
are called strong and weak negation respectively.

2. A characterization of the 4–valued modal algebras

Before working on Theorem 2.1 we will indicate proofs from A9 through A16.
Then,
(A9) x ≤ ∇x:

(1) (x∧ ∼ x) ∨ ∇x = (∇x∧ ∼ x) ∨ ∇x = ∇x, [A7]
(2) (x ∨∇x) ∧ (∼ x ∨ ∇x) = ∇x,
(3) (x ∨∇x) ∧ 1 = ∇x, [A6]
(4) x ∨ ∇x = ∇x,
(5) x ≤ ∇x.

(A10) ∇1 = 1: [A9]
(A11) ∇x ≤ ∇∇x: [A9]
(A12) ∇x∨ ∼ ∇x = 1:

(1) ∇x∧ ∼ ∇x =∼ ∇x ∧ ∇∇x, [A7]
(2) ∼ ∇x ∨ ∇x = ∇x∨ ∼ ∇∇x [(1), A5]

= (∇x∨ ∼ ∇∇x) ∧ 1
= (∇x∨ ∼ ∇∇x) ∧ (∼ x ∨ ∇x) [A6]
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= ((∇x∨ ∼ ∇∇x)∧ ∼ x) ∨ ((∇x∨ ∼ ∇∇x) ∧ ∇x)
= ((∇x∨ ∼ x) ∧ (∼ ∇∇x∨ ∼ x)) ∨∇x
= (1 ∧ (∼ ∇∇x∨ ∼ x)) ∨ ∇x [A6]
=∼ ∇∇x∨ ∼ x ∨ ∇x
= 1. [A6]

(A13) ∇x∧ ∼ ∇x = 0: [A12]
(A14) ∇∇x = ∇x:

∇∇x = ∇∇x ∧ 1
= ∇∇x ∧ (∇x∨ ∼ ∇x) [A12]
= (∇∇x ∧∇x) ∨ (∇∇x∧ ∼ ∇x)
= ∇x ∨ (∇∇x∧ ∼ ∇x) [A11]
= ∇x ∨ (∼ ∇x ∧∇x) [A7]
= ∇x.

(A15) If x ≤ y, then ∇x ≤ ∇y:
(1) x ≤ y, [Hip.]
(2) ∼ y ≤∼ x, [(1)]
(3) ∼ y ∨∇y ≤∼ x ∨∇y, [(2)]
(4) 1 =∼ x ∨∇y, [A6]
(5) 0 = x∧ ∼ ∇y, [A6]
(6) ∼ ∇x =∼ ∇x ∨ (x∧ ∼ ∇y) [(5)]

= (∼ ∇x ∨ x) ∧ (∼ ∇x∨ ∼ ∇y)
= 1 ∧ (∼ ∇x∨ ∼ ∇y) [A6]
=∼ ∇x∨ ∼ ∇y,

(7) ∇x = ∇x ∧ ∇y, [(6)]
(8) ∇x ≤ ∇y. [(7)]

(A16) ∇(∇x ∨ ∇y) = ∇(x ∨ y):
(1) x ≤ x ∨ y,
(2) y ≤ x ∨ y,
(3) ∇x ≤ ∇(x ∨ y), [(1), A15]
(4) ∇y ≤ ∇(x ∨ y), [(2), A15]
(5) ∇x ∨∇y ≤ ∇(x ∨ y), [(3), (4)]
(6) x ≤ ∇x, [A9]
(7) y ≤ ∇y, [A9]
(8) x ∨ y ≤ ∇x ∨ ∇y, [(6), (7)]
(9) ∇(x ∨ y) ≤ ∇(∇x ∨ ∇y), [(8), A15]
(10) ∇(∇x ∨ ∇y) ≤ ∇∇(x ∨ y), [(5), A15]
(11) ∇(∇x ∨ ∇y) ≤ ∇(x ∨ y), [(10), A14]
(12) ∇(∇x ∨ ∇y) = ∇(x ∨ y). [(9), (11)]

(A17) ∇x ∨ ∇y = ∇(x ∨ y):
(1) ∼ (∇x ∨∇y) ∧ ∇(∇x ∨∇y) = (∇x ∨ ∇y)∧ ∼ (∇x ∨ ∇y) [A7]

= (∇x ∨∇y)∧ ∼ ∇x∧ ∼ ∇y [A5]
= ((∇x∧ ∼ ∇x) ∨ (∇y∧ ∼ ∇x))∧ ∼ ∇y
= ∇y∧ ∼ ∇x∧ ∼ ∇y [A13]
= 0, [A13]

(2) ∼ (∇x ∨∇y) ∧ ∇(x ∨ y) = 0, [(1), A16]
(3) (∇x ∨ ∇y)∨ ∼ ∇(x ∨ y) = 1,
(4) ((∇x ∨ ∇y)∨ ∼ ∇(x ∨ y)) ∧ ∇(x ∨ y) = ∇(x ∨ y), [(3)]
(5) ((∇x ∨ ∇y) ∧ ∇(x ∨ y)) ∨ (∼ ∇(x ∨ y) ∧ ∇(x ∨ y)) = ∇(x ∨ y),
(6) (∇x ∨ ∇y) ∧∇(x ∨ y) = ∇(x ∨ y), [(5), A13]
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(7) ∇(x ∨ y) ≤ ∇x ∨ ∇y, [(6)]
(8) ∇x ∨∇y = ∇(x ∨ y). [(7), (5) of A16]

Theorem 2.1. Let 〈A,∧,∨,¬,Γ, 0, 1〉 be an algebra of type (2, 2, 1, 1, 0, 0) where
〈A,∧,∨, 0, 1〉 is a bounded distributive lattice with least element 0,
greatest element 1 and the operators �,∼ are defined on A by means of the formulas:
(D1) �x = ¬¬x,
(D2) ∼ x = (x ∨ ¬x) ∧ Γx.

Then (i) and (ii) are equivalent:
(i) 〈A,∧,∨,∼,�, 1〉 is a 4–valued modal algebra.
(ii) 〈A,∧,∨,¬,Γ, 0, 1〉 verifies these properties:

(B1) ¬¬1 = 1,
(B2) x ∧ ¬x = 0,
(B3) x ∨ Γx = 1,
(B4) ¬x ∧ Γ¬x = 0,
(B5) Γx ∨ ¬Γx = 1,
(B6) Γ(x ∧ y) = Γx ∨ Γy,
(B7) ¬(x ∨ y) = ¬x ∧ ¬y,
(B8) ¬(x ∧ ¬y) = ¬x ∨ ¬¬y,
(B9) Γ(x ∨ Γy) = Γx ∧ ΓΓy,
(B10) (x ∨ y) ∧ Γ(x ∨ y) ≤ x ∨ ¬x,
(B11) x ∧ Γx ∧ y ∧ Γy ≤ Γ(x ∨ y).
Where a ≤ b if and only if a ∧ b = a or a ∨ b = b. Moreover, the operators ¬,Γ
are defined on A by means of the formulas:
(D3) ¬x =∼ �x,
(D4) Γx = � ∼ x.

Proof. (i) =⇒ (ii)
(B1) ¬¬1 = 1: [D1, A10]
(B2) x ∧ ¬x = 0:

x ∧ ¬x = x∧ ∼ �x [D3]
=∼ (∼ x ∨ �x)
=∼ 1 [A6]
= 0.

(B3) x ∨ Γx = 1:
x ∨ Γx = x ∨ � ∼ x [D4]

=∼∼ x ∨ � ∼ x
= 1. [A6]

(B4) ¬x ∧ Γ¬x = 0:
¬x ∧ Γ¬x =∼ �x ∧ � ∼∼ �x [D3, D4]

=∼ �x ∧ ��x [A5]
=∼ �x ∧ �x [A14]
= 0. [A13]

(B5) Γx ∨ ¬Γx = 1:
Γx ∨ ¬Γx = � ∼ x∨ ∼ �� ∼ x [D3, D4]

= � ∼ x∨ ∼ � ∼ x [A14]
= 1. [A12]

(B6) Γ(x ∧ y) = Γx ∨ Γy:
Γ(x ∧ y) = � ∼ (x ∧ y) [D4]

= �(∼ x∨ ∼ y)
= � ∼ x ∨ � ∼ y [A17]
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= Γx ∨ Γy. [D4]
(B7) ¬(x ∨ y) = ¬x ∧ ¬y:

¬(x ∨ y) =∼ �(x ∨ y) [D3]
=∼ (�x ∨ �y) [A17]
=∼ �x∧ ∼ �y
= ¬x ∧ ¬y. [D3]

(B8) ¬(x ∧ ¬y) = ¬x ∨ ¬¬y:
¬(x ∧ ¬y) =∼ �(x∧ ∼ �y) [D3]

=∼ (�x ∧ � ∼ �y) [A8]
=∼ �x∨ ∼ � ∼ �y
= ¬x ∨ ¬¬y. [D3]

(B9) Γ(x ∨ Γy) = Γx ∧ ΓΓy:
Γ(x ∨ Γy) = � ∼ (x ∨ � ∼ y) [D4]

= �(∼ x∧ ∼ � ∼ y)
= � ∼ x ∧ � ∼ � ∼ y [A8]
= Γx ∧ ΓΓy. [D4]

(B10) (x ∨ y) ∧ Γ(x ∨ y) ≤ x ∨ ¬x:
(1) x ∧ Γx = x∧ ∼ x :

x ∧ Γx = x ∧ � ∼ x [D4]
=∼ (∼ x) ∧ �(∼ x) [A4]
=∼∼ x∧ ∼ x [A7]
= x∧ ∼ x, [A4]

(2) (x ∨ y) ∧ Γ(x ∨ y) ≤∼ x:
(x ∨ y) ∧ Γ(x ∨ y) = (x ∨ y)∧ ∼ (x ∨ y) [(1)]

= (x ∨ y)∧ ∼ x∧ ∼ y) [A5]
≤∼ x,

(3) ∼ x ≤ x ∨ ¬x:
∼ x ∧ (x ∨ ¬x) =∼ x ∧ (x∨ ∼ �x) [D3]

= (∼ x ∧ x) ∨ (∼ x∧ ∼ �x)
= (∼ x ∧ �x)∨ ∼ (x ∨ �x) [A7]
= (∼ x ∧ �x)∨ ∼ �x [A9]
= (∼ x∨ ∼ �x) ∧ (�x∨ ∼ �x)
=∼ (x ∧ �x) [A5, A12]
=∼ x, [A9]

(4) (x ∨ y) ∧ Γ(x ∨ y) ≤ x ∨ ¬x. [(2), (3)]
(B11) x ∧ Γx ∧ y ∧ Γy ≤ Γ(x ∨ y):

(x ∧ Γx) ∧ (y ∧ Γy) = (x∧ ∼ x) ∧ (y∧ ∼ y) [(1) of B10]
= (x ∧ y) ∧ (∼ x∧ ∼ y)
≤ (x ∨ y)∧ ∼ (x ∨ y)
= (x ∨ y) ∧ Γ(x ∨ y) [(1) of B10 ]
≤ Γ(x ∨ y).

(ii) =⇒ (i)
(B12) Γ0 = 1:

(1) x ∨ Γx = 1, [B3]
(2) Γ0 = 1. [(1)]

(B13) ¬1 = 0:
(1) 1 ∧ ¬1 = 0, [B2]
(2) ¬1 = 0. [(1)]

(B14) ¬x ≤ Γx:



SEVERAL CHARACTERIZATIONS OF THE 4–VALUED MODAL ALGEBRAS 159

¬x ∧ Γx = (¬x ∧ Γx) ∨ 0
= (¬x ∧ Γx) ∨ (x ∧ ¬x) [B2]
= ¬x ∧ (Γx ∨ x)
= ¬x ∧ 1 [B3]
= ¬x.

(B15) ¬0 = 1:
(1) 0 = 1 ∧ ¬1, [B2]
(2) ¬0 = ¬(1 ∧ ¬1) [(1)]

= ¬1 ∨ ¬¬1 [B8]
= 1. [B1]

(B16) Γ1 = 0:
¬0 ∧ Γ¬0 = 0, [B4]

1 ∧ Γ1 = 0, [B15]
Γ1 = 0.

(B17) Γx ∧ ΓΓx = 0:
Γx ∧ ΓΓx = Γ(x ∨ Γx) [B9]

= Γ1 [B3]
= 0. [B16]

(B18) ¬x ∨ ¬¬x = 1:
¬x ∨ ¬¬x = ¬(x ∧ ¬x) [B8]

= ¬0 [B2]
= 1. [B15]

(B19) ¬¬x = Γ¬x:
(1) Γ¬x = Γ¬x ∧ 1

= Γ¬x ∧ (¬x ∨ ¬¬x) [B18]
= (Γ¬x ∧ ¬x) ∨ (Γ¬x ∧ ¬¬x)
= 0 ∨ (Γ¬x ∧ ¬¬x) [B4]
= Γ¬x ∧ ¬¬x,

(2) Γ¬x ≤ ¬¬x, [(1)]
(3) ¬¬x ≤ Γ¬x, [B14]
(4) ¬¬x = Γ¬x. [(2), (3)]

(B20) ΓΓx = ¬Γx:
(1) ¬Γx ≤ ΓΓx, [B14]
(2) Γx ∧ ΓΓx = 0, [B17]
(3) Γx ∨ ¬Γx = 1, [B5]
(4) ΓΓx = ΓΓx∧1 = ΓΓx∧(Γx∨¬Γx) = (ΓΓx∧Γx)∨(ΓΓx∧¬Γx) = ΓΓx∧¬Γx,

[(2)]
(5) ΓΓx ≤ ¬Γx, [(4)]
(6) ΓΓx = ¬Γx. [(1), (5)]

(B21) ¬x ∧ ΓΓx = 0:
(1) ¬x ≤ Γx, [B14]
(2) ¬x ∧ ΓΓx ≤ Γx ∧ ΓΓx, [(1)]
(3) ¬x ∧ ΓΓx = 0. [(2), B17]

(B22) x ≤ ¬¬x:
(1) x ∧ 1 = x ∧ (¬x ∨ ¬¬x) [B18]

= (x ∧ ¬x) ∨ (x ∧ ¬¬x)
= x ∧ ¬¬x, [B2]

(2) x ≤ ¬¬x. [(1)]
(B23) ΓΓx ≤ x:
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(1) x = x ∨ Γ1 [B16]
= x ∨ Γ(x ∨ Γx) [B3]
= x ∨ (Γx ∧ ΓΓx) [B9]
= (x ∨ Γx) ∧ (x ∨ ΓΓx)
= x ∨ ΓΓx, [B3]

(2) ΓΓx ≤ x. [(1)]
(B24) ¬¬¬x = ¬x:

(1) ¬¬¬x = ¬(¬¬x)
= ¬(¬¬x ∨ x) [B22]
= ¬¬¬x ∧ ¬x, [B7]

(2) ¬¬¬x ≤ ¬x, [(1)]
(3) ¬x ≤ ¬¬¬x, [B22]
(4) ¬¬¬x = ¬x. [(2), (3)]

(B25) ΓΓΓx = Γx:
(1) ΓΓΓx ≤ Γx, [B23]
(2) ΓΓΓx = Γ(ΓΓx)

= Γ(ΓΓx ∧ x) [B23]
= ΓΓΓx ∨ Γx, [B6]

(3) Γx ≤ ΓΓΓx, [(2)]
(4) Γx = ΓΓΓx. [(1), (3)]

(B26) ¬Γx ≤ x:
(1) ΓΓx = ¬Γx, [B20]
(2) ΓΓx ≤ x, [B23]
(3) ¬Γx ≤ x. [(1), (2)]

(B27) ΓΓ¬x = ¬x:
ΓΓ¬x = ¬Γ¬x [B20]

= ¬¬¬x [B19]
= ¬x. [B24]

(B28) ΓΓΓ¬x = ¬¬x:
ΓΓΓ¬x = Γ¬x [B27]

= ¬¬x. [B19]
(B29) Γ((x ∨ ¬x) ∧ Γx) = ¬¬x:

Γ((x ∨ ¬x) ∧ Γx) = Γ(x ∨ ¬x) ∨ ΓΓx [B6]
= Γ(x ∨ ΓΓ¬x) ∨ ΓΓx [B27]
= (Γx ∧ ¬¬x) ∨ ΓΓx [B9, B28]
= (Γx ∨ ΓΓx) ∧ (¬¬x ∨ ΓΓx)
= ¬¬x. [B3, B22, B23]

(B30) ¬¬Γx = Γx:
¬¬Γx = Γ¬Γx [B19]

= ΓΓΓx [B20]
= Γx. [B25]

(B31) ¬¬¬Γx = ΓΓx:
¬¬¬Γx = ΓΓΓ¬¬Γx [B28]

= Γ¬¬Γx [B25]
= ¬¬¬Γx [B19]
= ¬Γx [B24]
= ΓΓx. [B20]

(B32) ¬((x ∧ Γx) ∨ ¬x) = ΓΓx:
¬((x ∧ Γx) ∨ ¬x) = ¬(x ∧ Γx) ∧ ¬¬x [B7]
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= ¬(x ∧ ¬¬Γx) ∧ ¬¬x [B30]
= (¬x ∨ ΓΓx) ∧ ¬¬x [B8, B31]
= ΓΓx. [B2, B22, B23]

(B33) Γ¬¬x = ¬x:
Γ¬¬x = ¬¬¬x [B19]

= ¬x. [B24]
Now we are able to prove the axioms A4, A6 and A7.

Axiom A4 ∼∼ x = x:
First, we observe that from B14 and D2 we obtain: (D3) ∼ x = (x ∧ Γx) ∨ ¬x.
Then
(1) ∼∼ x = (((x ∧ Γx) ∨ ¬x) ∧ Γ((x ∧ Γx) ∨ ¬x)) ∨ ¬((x ∧ Γx) ∨ ¬x), [D3]
(2) Γ((x ∧ Γx) ∨ ¬x)) = Γ((x ∨ ¬x) ∧ (Γx ∨ ¬x))

= Γ((x ∨ ¬x) ∧ Γx) [B14]
= ¬¬x, [B29]

(3) ∼∼ x = (((x ∧ Γx) ∨ ¬x) ∧ ¬¬x) ∨ ΓΓx [(1), (2), B32]
= (((x ∧ Γx) ∧ ¬¬x) ∨ (¬x ∧ ¬¬x)) ∨ ΓΓx
= ((x ∧ Γx) ∧ ¬¬x) ∨ ΓΓx [B2]
= ((x ∧ Γx) ∨ ΓΓx) ∧ (¬¬x ∨ ΓΓx)
= ((x ∧ Γx) ∨ ΓΓx) ∧ ¬¬x [B22, B23]
= ((x ∨ ΓΓx) ∧ (Γx ∨ ΓΓx)) ∧ ¬¬x
= (x ∨ ΓΓx) ∧ ¬¬x [B3]
= x ∧ ¬¬x [B23]
= x. [B22]

Axiom A6 ∼ x ∨ �x = 1:
∼ x ∨ �x = (x ∧ Γx) ∨ ¬x ∨ ¬¬x [D3, D1]

= (x ∧ Γx) ∨ 1 = 1. [B18]
Axiom A7 x∧ ∼ x =∼ x ∧ �x:

∼ x ∧ �x = ((x ∧ Γx) ∨ ¬x) ∧ ¬¬x [D3, D1]
= (x ∧ Γx ∧ ¬¬x) ∨ (¬x ∧ ¬¬x)
= (x ∧ Γx) ∨ 0 [B22, B2]
= (x ∧ Γx) ∨ (x ∧ ¬x) [B2]
= ((x ∧ Γx) ∨ x) ∧ ((x ∧ Γx) ∨ ¬x)
= x∧ ∼ x. [D3]

(B34) If x ≤ y then ¬y ≤ ¬x and Γy ≤ Γx:
(1) x ≤ y, [Hip.]
(2) x ∨ y = y, [(1)]
(3) ¬(x ∨ y) = ¬y, [(2)]
(4) ¬x ∧ ¬y = ¬y, [(3), B7]
(5) ¬y ≤ ¬x, [(4)]
(6) x ∧ y = x, [(1)]
(7) Γ(x ∧ y) = Γx, [(6)]
(8) Γx ∨ Γy = Γx, [(7), B6]
(9) Γy ≤ Γx. [(8)]

(B35) ∼ Γx = ΓΓx:
∼ Γx = ΓΓx ∧ (Γx ∨ ¬Γx) [D2]

= ΓΓx ∧ (Γx ∨ ΓΓx) [B20]
= ΓΓx. [A2]

(B36) ∼ (¬x ∧ Γy) = ¬¬x ∨ ΓΓy:
(1) ∼ (¬x ∧ Γy) = Γ (¬x ∧ Γy) ∧ ((¬x ∧ Γy) ∨ ¬ (¬x ∧ Γy)) , [D2]




