Annals of the University of Craiova Mathematics and Computer Science Series

Vol. XLI, Issue 2, December 2014

The Annals of the University of Craiova, Mathematics and Computer Science Series, is edited by Department of Mathematics and Department of Computer Sciences, University of Craiova, Romania.

Editorial Team

Managing Editor

Vicenţiu Rădulescu, University of Craiova, Romania

Editorial Board

Viorel Barbu, Romanian Academy, Romania
Dumitru Buşneag, University of Craiova, Romania
Philippe G. Ciarlet, French Academy of Sciences, France
Nicolae Constantinescu, University of Craiova, Romania
Jesus Ildefonso Diaz, Universidad Complutense de Madrid, Spain
Massimiliano Ferrara, Mediterranea University of Reggio Calabria, Italy
George Georgescu, University of Bucharest, Romania
Olivier Goubet, Université de Picardie Jules Verne, France
Ion Iancu, University of Craiova, Romania
Marius Iosifescu, Romanian Academy, Romania
Solomon Marcus, Romanian Academy, Romania
Giovanni Molica Bisci, Università degli Studi Mediterranea di Reggio Calabria, Italy Sorin Micu, University of Craiova, Romania
Gheorghe Moroşanu, Central European University Budapest, Hungary
Constantin Năstăsescu, Romanian Academy, Romania
Constantin P. Niculescu, University of Craiova, Romania
Dušan Repovš, University of Ljubljana, Slovenia
Sergiu Rudeanu, University of Bucharest, Romania
Mircea Sofonea, Université de Perpignan, France
Michel Willem, Université Catolique de Louvain, Belgium
Tudor Zamfirescu, Universitat Dortmund, Germany
Enrique Zuazua, Basque Center for Applied Mathematics, Spain

Editorial Assistant

Mihaela Sterpu, University of Craiova, Romania

Information for authors. The journal is publishing all papers using electronic production methods and therefore needs to receive the electronic files of your article. These files can be submitted preferably using the online submission system:
http://inf.ucv.ro/~ami/index.php/ami/about/submissions
by e-mail at office.annals@inf.ucv.ro or by mail at the address:
Analele Universităţii din Craiova. Seria Matematică -Informatică
A. I. Cuza 13

Craiova, 200585, Romania
Web: http://inf.ucv.ro/~ami/
The submitted paper should contain original work which was not previously published, is not under review at another journal or conference and does not significantly overlap with other previous papers of the authors. Each paper will be reviewed by independent reviewers. The results of the reviewing process will be transmitted by e-mail to the first author of the paper. The acceptance of the papers will be based on their scientific merit. Upon acceptance, the papers will be published both in hard copy and on the Web page of the journal, in the first available volume.

The journal is abstracted/indexed/reviewed by Mathematical Reviews, Zentralblatt MATH, SCOPUS. This journal is also covered/included in many digital directories of open resources in mathematics and computer science as Index Copernicus, Open J-Gate, AMS Digital Mathematics Registry, Directory of Open Access Journals, CENTRAL EUROPEAN UNIVERSITY - Catalogue.

Volume Editors: Vicenţiu Rădulescu, Mihaela Sterpu
Layout Editor: Mihai Gabroveanu
ISSN 1223-6934
Online ISSN 2246-9958

Printed in Romania: Universitaria Press, Craiova, 2014.
http://www.editurauniversitaria.ro

Several characterizations of the 4 -valued modal algebras

Aldo Victorio Figallo and Paolo Landini

Abstract. A. Monteiro, in 1978, defined the algebras he named tetravalent modal algebras, that will be called 4 -valued modal algebras in this work. These algebras constitute a generalization of the 3 -valued Lukasiewicz algebras defined by Moisil.

The theory of the 4 -valued modal algebras has been widely developed by I. Loureiro in $[6,7,8,9,10,11,12]$ and by A. V. Figallo in $[2,3,4,5]$.
J. Font and M. Rius indicated, in the introduction to the important work [1], a brief but detailed review on the 4 -valued modal algebras.

In this work varied characterizations are presented that show the "closeness" this variety of algebras has with other well-known algebras related to the algebraic counterparts of certain logics.

2010 Mathematics Subject Classification. Primary 06D99; Secondary 06D30.
Key words and phrases. De Morgan algebras, tetravalente modal algebras, three-valued Łukasiewicz algebras, 4 -valued modal algebras.

1. Introduction

In 1940 G. C. Moisil [13] introduced the notion of three-valued Łukasiewicz algebra. In 1963, A.Monteiro [14] characterized these algebras as algebras $\langle A, \wedge, \vee, \sim, \nabla, 1\rangle$ of type $(2,2,1,1,0)$ which verify the following identities:
(A1) $x \vee 1=1$,
(A2) $x \wedge(x \vee y)=x$,
(A3) $x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x)$,
(A4) $\sim \sim x=x$,
(A5) $\sim(x \vee y)=\sim x \wedge \sim y$,
(A6) $\sim x \vee \nabla x=1$,
(A7) $x \wedge \sim x=\sim x \wedge \nabla x$,
(A8) $\nabla(x \wedge y)=\nabla x \wedge \nabla y$.
L.Monteiro [15] proved that A1 follows from A2, \cdots, A8, and that A2, \cdots, A8, are independent.

From $\mathrm{A} 2, \cdots, \mathrm{~A} 5$ it follows that $\langle A, \wedge, \vee, \sim, 1\rangle$ is a De Morgan algebra with last element 1 and first element $0=\sim 1$.

In Lemma 1.1 we will indicate other properties valid in the variety of 4 -valued modal algebras necessary for the development that follows.

Lemma 1.1. In every 4 -valued modal algebra $\langle A, \wedge, \vee, \sim, \nabla, 1\rangle$ we have : A9-A17.
(A9) $x \leq \nabla x$,
(A10) $\nabla 1=1$,
(A11) $\nabla x \leq \nabla \nabla x$,
(A12) $\nabla x \vee \sim \nabla x=1$,

[^0](A13) $\nabla x \wedge \sim \nabla x=0$,
(A14) $\nabla \nabla x=\nabla x$,
(A15) If $x \leq y$, then $\nabla x \leq \nabla y$,
(A16) $\nabla(\nabla x \vee \nabla y)=\nabla(x \vee y)$,
(A17) $\nabla x \vee \nabla y=\nabla(x \vee y)$,
the proof of which we will indicate in the section that follows.
In 1969 J . Varlet [16] characterized three-valued Lukasiewicz algebras by means of other operations. Let $\langle A, \wedge, \vee, *,+, 0,1\rangle$ be an algebra of type $(2,2,1,1,0,0)$ where $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice with least element 0 , greatest element 1 and the following properties are satisfied:
(V1) $x \wedge x^{*}=0$,
(V2) $(x \wedge y)^{*}=x^{*} \wedge y^{*}$,
(V3) $0^{*}=1$,
(V4) $x \vee x^{+}=1$,
(V5) $(x \vee y)^{+}=x^{+} \wedge y^{+}$,
(V6) $1^{+}=0$,
(V7) If $x^{*}=y^{*}$ and $x^{+}=y^{+}$, then $x=y$.
About these algebras he proved that it is posible to define, in the sense of $[14,15]$ a structure of three-valued Łukasiewicz algebra by taking $\sim x=\left(x \vee x^{*}\right) \wedge x^{+}$and $\nabla x=x^{* *}$.

Furthermore it holds $x^{*}=\sim \nabla x$ and $x^{+}=\nabla \sim x$. Therefore three-valued Łukasiewicz are double Stone lattices which satisfy the determination principle V7. Moreover V7 may be replaced by the identity

$$
\left(x \wedge x^{+}\right) \wedge\left(y \vee y^{*}\right)=x \wedge x^{+}
$$

Later, in 1963, A. Monteiro [14] considered the 4 -valued modal algebras $\langle A, \wedge, \vee, \sim, \nabla, 1\rangle$ of type $(2,2,1,1,0)$ which satisfy $A 2, \cdots, A 7$ as an abstraction of three-valued Łukasiewicz algebras.

In this paper we give several characterizations of the 4 -valued modal algebras. In the first one we consider the operations $\wedge, \vee, \neg, \Gamma, 0,1$ where $\neg x=\sim \nabla x, \Gamma x=\nabla \sim x$ are called strong and weak negation respectively.

2. A characterization of the 4 -valued modal algebras

Before working on Theorem 2.1 we will indicate proofs from A9 through A16. Then,
(A9) $x \leq \nabla x$:
(1) $(x \wedge \sim x) \vee \nabla x=(\nabla x \wedge \sim x) \vee \nabla x=\nabla x$,
(2) $(x \vee \nabla x) \wedge(\sim x \vee \nabla x)=\nabla x$,
(3) $(x \vee \nabla x) \wedge 1=\nabla x$,
(4) $x \vee \nabla x=\nabla x$,
(5) $x \leq \nabla x$.
(A10) $\nabla 1=1$:
(A11) $\nabla x \leq \nabla \nabla x$:
(A12) $\nabla x \vee \sim \nabla x=1$:
(1) $\nabla x \wedge \sim \nabla x=\sim \nabla x \wedge \nabla \nabla x$,
(2) $\sim \nabla x \vee \nabla x=\nabla x \vee \sim \nabla \nabla x$

$$
\begin{align*}
& =(\nabla x \vee \sim \nabla \nabla x) \wedge 1 \tag{1}\\
& =(\nabla x \vee \sim \nabla \nabla x) \wedge(\sim x \vee \nabla x)
\end{align*}
$$

$$
\begin{aligned}
& =((\nabla x \vee \sim \nabla \nabla x) \wedge \sim x) \vee((\nabla x \vee \sim \nabla \nabla x) \wedge \nabla x) \\
& =((\nabla x \vee \sim x) \wedge(\sim \nabla \nabla x \vee \sim x)) \vee \nabla x \\
& =(1 \wedge(\sim \nabla \nabla x \vee \sim x)) \vee \nabla x \\
& =\sim \nabla \nabla x \vee \sim x \vee \nabla x \\
& =1 .
\end{aligned}
$$

(A13) $\nabla x \wedge \sim \nabla x=0$:
(A14) $\nabla \nabla x=\nabla x$:

$$
\begin{align*}
\nabla \nabla x & =\nabla \nabla x \wedge 1 \\
& =\nabla \nabla x \wedge(\nabla x \vee \sim \nabla x) \tag{A12}\\
& =(\nabla \nabla x \wedge \nabla x) \vee(\nabla \nabla x \wedge \sim \nabla x) \\
& =\nabla x \vee(\nabla \nabla x \wedge \sim \nabla x) \tag{A11}\\
& =\nabla x \vee(\sim \nabla x \wedge \nabla x) \tag{A7}\\
& =\nabla x .
\end{align*}
$$

(A15) If $x \leq y$, then $\nabla x \leq \nabla y$:
(1) $x \leq y$,
[Hip.]
(2) $\sim y \leq \sim x$,
[(1)]
(3) $\sim y \vee \nabla y \leq \sim x \vee \nabla y$,
(4) $1=\sim x \vee \nabla y$,
(5) $0=x \wedge \sim \nabla y$,
(6) $\sim \nabla x=\sim \nabla x \vee(x \wedge \sim \nabla y)$

$$
\begin{align*}
& =(\sim \nabla x \vee x) \wedge(\sim \nabla x \vee \sim \nabla y) \tag{5}\\
& =1 \wedge(\sim \nabla x \vee \sim \nabla y) \tag{A6}\\
& =\sim \nabla x \vee \sim \nabla y, \tag{6}
\end{align*}
$$

(7) $\nabla x=\nabla x \wedge \nabla y$,
(8) $\nabla x \leq \nabla y$.
(A16) $\nabla(\nabla x \vee \nabla y)=\nabla(x \vee y)$:
(1) $x \leq x \vee y$,
(2) $y \leq x \vee y$,
(3) $\nabla x \leq \nabla(x \vee y)$,
[(1), A15]
(4) $\nabla y \leq \nabla(x \vee y)$, [(2), A15]
(5) $\nabla x \vee \nabla y \leq \nabla(x \vee y)$, [(3), (4)]
(6) $x \leq \nabla x$,
(7) $y \leq \nabla y$,
(8) $x \vee y \leq \nabla x \vee \nabla y$,
(9) $\nabla(x \vee y) \leq \nabla(\nabla x \vee \nabla y)$,
(10) $\nabla(\nabla x \vee \nabla y) \leq \nabla \nabla(x \vee y)$,
[(5), A15]
(11) $\nabla(\nabla x \vee \nabla y) \leq \nabla(x \vee y)$,
[(10), A14]
(12) $\nabla(\nabla x \vee \nabla y)=\nabla(x \vee y)$.
[(9), (11)]
(A17) $\nabla x \vee \nabla y=\nabla(x \vee y)$:
(1) $\sim(\nabla x \vee \nabla y) \wedge \nabla(\nabla x \vee \nabla y)=(\nabla x \vee \nabla y) \wedge \sim(\nabla x \vee \nabla y)$
$=(\nabla x \vee \nabla y) \wedge \sim \nabla x \wedge \sim \nabla y$
$=((\nabla x \wedge \sim \nabla x) \vee(\nabla y \wedge \sim \nabla x)) \wedge \sim \nabla y$
$=\nabla y \wedge \sim \nabla x \wedge \sim \nabla y$

$$
\begin{equation*}
=0, \tag{A13}
\end{equation*}
$$

(2) $\sim(\nabla x \vee \nabla y) \wedge \nabla(x \vee y)=0$,
[(1), A16]
(3) $(\nabla x \vee \nabla y) \vee \sim \nabla(x \vee y)=1$,
(4) $((\nabla x \vee \nabla y) \vee \sim \nabla(x \vee y)) \wedge \nabla(x \vee y)=\nabla(x \vee y)$,
(5) $((\nabla x \vee \nabla y) \wedge \nabla(x \vee y)) \vee(\sim \nabla(x \vee y) \wedge \nabla(x \vee y))=\nabla(x \vee y)$,
(6) $(\nabla x \vee \nabla y) \wedge \nabla(x \vee y)=\nabla(x \vee y)$,
(7) $\nabla(x \vee y) \leq \nabla x \vee \nabla y$,
(8) $\nabla x \vee \nabla y=\nabla(x \vee y)$.
[(7), (5) of A16]
Theorem 2.1. Let $\langle A, \wedge, \vee, \neg, \Gamma, 0,1\rangle$ be an algebra of type ($2,2,1,1,0,0$) where $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice with least element 0 , greatest element 1 and the operators ∇, \sim are defined on A by means of the formulas:
(D1) $\nabla x=\neg \neg x$,
(D2) $\sim x=(x \vee \neg x) \wedge \Gamma x$.
Then (i) and (ii) are equivalent:
(i) $\langle A, \wedge, \vee, \sim, \nabla, 1\rangle$ is a 4 -valued modal algebra.
(ii) $\langle A, \wedge, \vee, \neg, \Gamma, 0,1\rangle$ verifies these properties:
(B1) $\neg \neg 1=1$,
(B2) $x \wedge \neg x=0$,
(B3) $x \vee \Gamma x=1$,
(B4) $\neg x \wedge \Gamma \neg x=0$,
(B5) $\Gamma x \vee \neg \Gamma x=1$,
(B6) $\Gamma(x \wedge y)=\Gamma x \vee \Gamma y$,
(B7) $\neg(x \vee y)=\neg x \wedge \neg y$,
(B8) $\neg(x \wedge \neg y)=\neg x \vee \neg \neg y$,
(B9) $\Gamma(x \vee \Gamma y)=\Gamma x \wedge \Gamma \Gamma y$,
(B10) $(x \vee y) \wedge \Gamma(x \vee y) \leq x \vee \neg x$,
(B11) $x \wedge \Gamma x \wedge y \wedge \Gamma y \leq \Gamma(x \vee y)$.
Where $a \leq b$ if and only if $a \wedge b=a$ or $a \vee b=b$. Moreover, the operators \neg, Γ are defined on A by means of the formulas:
(D3) $\neg x=\sim \nabla x$,
(D4) $\Gamma x=\nabla \sim x$.
Proof. (i) \Longrightarrow (ii)
(B1) $\neg \neg 1=1$:
[D1, A10]
(B2) $x \wedge \neg x=0$:

$$
\begin{align*}
x \wedge \neg x & =x \wedge \sim \nabla x \tag{D3}\\
& =\sim(\sim x \vee \nabla x) \\
& =\sim 1 \tag{A6}
\end{align*}
$$

(B3) $x \vee \Gamma x=1$:

$$
\begin{align*}
x \vee \Gamma x & =x \vee \nabla \sim x \\
& =\sim \sim x \vee \nabla \sim x \\
& =1 . \tag{A6}
\end{align*}
$$

(B4) $\neg x \wedge \Gamma \neg x=0$:

$$
\begin{align*}
\neg x \wedge \Gamma \neg x & =\sim \nabla x \wedge \nabla \sim \sim \nabla x \tag{D3,D4}\\
& =\sim \nabla x \wedge \nabla \nabla x \\
& =\sim \nabla x \wedge \nabla x \\
& =0 .
\end{align*}
$$

(B5) $\Gamma x \vee \neg \Gamma x=1$:

$$
\begin{align*}
\Gamma x \vee \neg \Gamma x & =\nabla \sim x \vee \sim \nabla \nabla \sim x \tag{D3,D4}\\
& =\nabla \sim x \vee \sim \nabla \sim x \\
& =1 .
\end{align*}
$$

(B6) $\Gamma(x \wedge y)=\Gamma x \vee \Gamma y$:

$$
\begin{align*}
\Gamma(x \wedge y) & =\nabla \sim(x \wedge y) \tag{D4}\\
& =\nabla(\sim x \vee \sim y) \\
& =\nabla \sim x \vee \nabla \sim y \tag{A17}
\end{align*}
$$

$=\Gamma x \vee \Gamma y$.
[D4]
(B7) $\neg(x \vee y)=\neg x \wedge \neg y$:

$$
\begin{aligned}
\neg(x \vee y) & =\sim \nabla(x \vee y) \\
& =\sim(\nabla x \vee \nabla y) \\
& =\sim \nabla x \wedge \sim \nabla y \\
& =\neg x \wedge \neg y .
\end{aligned}
$$

(B8) $\neg(x \wedge \neg y)=\neg x \vee \neg \neg y$:

$$
\begin{align*}
\neg(x \wedge \neg y) & =\sim \nabla(x \wedge \sim \nabla y) \tag{D3}\\
& =\sim(\nabla x \wedge \nabla \sim \nabla y) \\
& =\sim \nabla x \vee \sim \nabla \sim \nabla y \\
& =\neg x \vee \neg \neg y .
\end{align*}
$$

(B9) $\Gamma(x \vee \Gamma y)=\Gamma x \wedge Г Г y$:

$$
\begin{aligned}
\Gamma(x \vee \Gamma y) & =\nabla \sim(x \vee \nabla \sim y) \\
& =\nabla(\sim x \wedge \sim \nabla \sim y) \\
& =\nabla \sim x \wedge \nabla \sim \nabla \sim y \\
& =\Gamma x \wedge \Gamma \Gamma y .
\end{aligned}
$$

(B10) $(x \vee y) \wedge \Gamma(x \vee y) \leq x \vee \neg x$:
(1) $x \wedge \Gamma x=x \wedge \sim x$:

$$
x \wedge \Gamma x=x \wedge \nabla \sim x
$$

$$
=\sim(\sim x) \wedge \nabla(\sim x)
$$

$$
=\sim \sim x \wedge \sim x
$$

$$
=x \wedge \sim x
$$

(2) $(x \vee y) \wedge \Gamma(x \vee y) \leq \sim x$:

$$
\begin{align*}
(x \vee y) \wedge \Gamma(x \vee y) & =(x \vee y) \wedge \sim(x \vee y) \tag{1}\\
& =(x \vee y) \wedge \sim x \wedge \sim y) \\
& \leq \sim x,
\end{align*}
$$

(3) $\sim x \leq x \vee \neg x$:

$$
\begin{equation*}
\sim x \wedge(x \vee \neg x)=\sim x \wedge(x \vee \sim \nabla x) \tag{D3}
\end{equation*}
$$

$=(\sim x \wedge x) \vee(\sim x \wedge \sim \nabla x)$
$=(\sim x \wedge \nabla x) \vee \sim(x \vee \nabla x)$
$=(\sim x \wedge \nabla x) \vee \sim \nabla x$ [A9]

$$
\begin{equation*}
=(\sim x \vee \sim \nabla x) \wedge(\nabla x \vee \sim \nabla x) \tag{A7}
\end{equation*}
$$

$$
=\sim(x \wedge \nabla x)
$$

$$
\begin{equation*}
=\sim x, \tag{A9}
\end{equation*}
$$

(4) $(x \vee y) \wedge \Gamma(x \vee y) \leq x \vee \neg x$.
(B11) $x \wedge \Gamma x \wedge y \wedge \Gamma y \leq \Gamma(x \vee y):$

$$
\begin{align*}
(x \wedge \Gamma x) \wedge(y \wedge \Gamma y) & =(x \wedge \sim x) \wedge(y \wedge \sim y) \tag{2}\\
& =(x \wedge y) \wedge(\sim x \wedge \sim y) \\
& \leq(x \vee y) \wedge \sim(x \vee y) \\
& =(x \vee y) \wedge \Gamma(x \vee y)
\end{align*}
$$

$$
(\mathrm{ii}) \Longrightarrow(\mathrm{i})
$$

(B12) $\Gamma 0=1$:
(1) $x \vee \Gamma x=1$,
(2) $\Gamma 0=1$.
(B13) $\neg 1=0$:
(1) $1 \wedge \neg 1=0$,
(2) $\neg 1=0$.
(B14) $\neg x \leq \Gamma x$:

$$
\begin{aligned}
\neg x \wedge \Gamma x & =(\neg x \wedge \Gamma x) \vee 0 \\
& =(\neg x \wedge \Gamma x) \vee(x \wedge \neg x) \\
& =\neg x \wedge(\Gamma x \vee x) \\
& =\neg x \wedge 1 \\
& =\neg x
\end{aligned}
$$

(B15) $\neg 0=1$:
(1) $0=1 \wedge \neg 1$,
[B2]
(2) $\neg 0=\neg(1 \wedge \neg 1)$
[(1)]
$=\neg 1 \vee \neg \neg 1$
[B8]
$=1$.
$(\mathrm{B} 16) \Gamma 1=0$:

$$
\begin{array}{r}
\neg 0 \wedge \Gamma \neg 0=0, \tag{B4}\\
1 \wedge \Gamma 1=0, \\
\Gamma 1=0 .
\end{array}
$$

(B17) $\Gamma x \wedge \Gamma \Gamma x=0:$

$$
\begin{array}{rlr}
\Gamma x \wedge \Gamma \Gamma x & =\Gamma(x \vee \Gamma x) & {[\mathrm{B} 9]} \\
& =\Gamma 1 & {[\mathrm{~B} 3]} \\
& =0 . & {[\mathrm{B} 16]}
\end{array}
$$

(B18) $\neg x \vee \neg \neg x=1$:

$$
\begin{aligned}
\neg x \vee \neg \neg x & =\neg(x \wedge \neg x) \\
& =\neg 0 \\
& =1
\end{aligned}
$$

[B8]
[B2]

$$
[\mathrm{B} 15]
$$

(B19) $\neg \neg x=\Gamma \neg x:$

$$
\text { (1) } \begin{align*}
\Gamma \neg x & =\Gamma \neg x \wedge 1 \\
& =\Gamma \neg x \wedge(\neg x \vee \neg \neg x) \\
& =(\Gamma \neg x \wedge \neg x) \vee(\Gamma \neg x \wedge \neg \neg x) \\
& =0 \vee(\Gamma \neg x \wedge \neg \neg x) \tag{B4}\\
& =\Gamma \neg x \wedge \neg \neg x
\end{align*}
$$

[B18]
[(1)]
(2) $\Gamma \neg x \leq \neg \neg x$, [B14]
(3) $\neg \neg x \leq \Gamma \neg x$, $[(2),(3)]$
(B20) $\Gamma \Gamma x=\neg \Gamma x:$
(1) $\neg \Gamma x \leq \Gamma \Gamma x$,
[B14]
(2) $\Gamma x \wedge \Gamma \Gamma x=0, \quad[\mathrm{~B} 17]$
(3) $\Gamma x \vee \neg \Gamma x=1$, [B5]
(4) $\Gamma \Gamma x=\Gamma \Gamma x \wedge 1=\Gamma \Gamma x \wedge(\Gamma x \vee \neg \Gamma x)=(\Gamma \Gamma x \wedge \Gamma x) \vee(\Gamma \Gamma x \wedge \neg \Gamma x)=\Gamma \Gamma x \wedge \neg \Gamma x$,
(5) $\Gamma \Gamma x \leq \neg \Gamma x$,
(6) $\Gamma \Gamma x=\neg \Gamma x$.
[(1), (5)]
(B21) $\neg x \wedge \Gamma \Gamma x=0:$
(1) $\neg x \leq \Gamma x$,
[B14]
(2) $\neg x \wedge \Gamma \Gamma x \leq \Gamma x \wedge \Gamma \Gamma x$,
(3) $\neg x \wedge \Gamma \Gamma x=0$.
[(2), B17]
(B22) $x \leq \neg \neg x$:

$$
\text { (1) } \begin{align*}
x \wedge 1 & =x \wedge(\neg x \vee \neg \neg x) \\
& =(x \wedge \neg x) \vee(x \wedge \neg \neg x) \tag{1}\\
& =x \wedge \neg \neg x \tag{B2}
\end{align*}
$$

[B18]
(2) $x \leq \neg \neg x$.
(B23) $\Gamma \Gamma x \leq x$:
(1) $x=x \vee \Gamma 1 \quad[\mathrm{~B} 16]$
$=x \vee \Gamma(x \vee \Gamma x) \quad$ [B3]
$=x \vee(\Gamma x \wedge \Gamma \Gamma x)$ [B9]
$=(x \vee \Gamma x) \wedge(x \vee \Gamma \Gamma x)$

$$
=x \vee \Gamma \Gamma x,
$$

(2) $\Gamma \Gamma x \leq x$.
(B24) $\neg \neg \neg x=\neg x$:
(1) $\neg \neg \neg x=\neg(\neg \neg x)$

$$
=\neg(\neg \neg x \vee x)
$$

$$
=\neg \neg \neg x \wedge \neg x,
$$

(2) $\neg \neg \neg x \leq \neg x$,
[B22]
[(2), (3)]
(B25) $Г \Gamma \Gamma x=\Gamma x:$
(1) $Г Г \Gamma x \leq \Gamma x$
(2) $Г \Gamma \Gamma x=\Gamma(\Gamma Г x)$
$=\Gamma(\Gamma \Gamma x \wedge x)$
$=Г \Gamma \Gamma x \vee \Gamma x$,
[B23]
(3) $\Gamma x \leq \Gamma \Gamma \Gamma x$,
(4) $\Gamma x=Г Г \Gamma x$.
$[(1),(3)]$
(B26) $\neg \Gamma x \leq x$:
(1) $\Gamma \Gamma x=\neg \Gamma x$,
(2) $\Gamma \Gamma x \leq x$,
(3) $\neg \Gamma x \leq x$.
[B20]
[B23]
[(1), (2)]
(B27) $\Gamma \Gamma \neg x=\neg x$:

$$
\begin{aligned}
\Gamma \Gamma \neg x & =\neg \Gamma \neg x & & {[\mathrm{~B} 20] } \\
& =\neg \neg \neg x & & {[\mathrm{~B} 19] } \\
& =\neg x . & & {[\mathrm{B} 24] }
\end{aligned}
$$

(B28) $Г \Gamma \Gamma \neg x=\neg \neg x$:

$$
\begin{equation*}
\Gamma \Gamma \Gamma \neg x=\Gamma \neg x \tag{B27}
\end{equation*}
$$

$$
=\neg \neg x .
$$

[B19]
(B29) $\Gamma((x \vee \neg x) \wedge \Gamma x)=\neg \neg x$:

$$
\begin{align*}
\Gamma((x \vee \neg x) \wedge \Gamma x) & =\Gamma(x \vee \neg x) \vee \Gamma \Gamma x \tag{B6}\\
& =\Gamma(x \vee \Gamma \Gamma \neg x) \vee \Gamma \Gamma x \tag{B27}\\
& =(\Gamma x \wedge \neg \neg x) \vee \Gamma \Gamma x \\
& =(\Gamma x \vee \Gamma \Gamma x) \wedge(\neg \neg x \vee \Gamma \Gamma x) \\
& =\neg \neg x .
\end{align*}
$$

[B9, B28]
[B3, B22, B23]
(B30) $\neg \neg \Gamma x=\Gamma x$:

$$
\begin{array}{rlrl}
\neg \neg \Gamma x & =\Gamma \neg \Gamma x & & {[\mathrm{~B} 19]} \\
& =\Gamma \Gamma \Gamma x & {[\mathrm{~B} 20]}
\end{array}
$$

$$
=\Gamma x
$$

(B31) $\neg \neg \neg \Gamma x=\Gamma \Gamma x:$

$$
\neg \neg \neg \Gamma x=\Gamma \Gamma \Gamma \neg \neg \Gamma x \quad[\mathrm{~B} 28]
$$

$$
=\Gamma \neg \neg \Gamma x \quad[\mathrm{~B} 25]
$$

$$
=\neg \neg \neg \Gamma x
$$

[B19]

$$
=\neg \Gamma x \quad[\mathrm{~B} 24]
$$

$$
=\Gamma \Gamma x
$$

(B32) $\neg((x \wedge \Gamma x) \vee \neg x)=\Gamma \Gamma x:$

$$
\begin{equation*}
\neg((x \wedge \Gamma x) \vee \neg x)=\neg(x \wedge \Gamma x) \wedge \neg \neg x \tag{B7}
\end{equation*}
$$

$$
\begin{aligned}
& =\neg(x \wedge \neg \neg \Gamma x) \wedge \neg \neg x \\
& =(\neg x \vee \Gamma \Gamma x) \wedge \neg \neg x \\
& =\Gamma \Gamma x
\end{aligned}
$$

[B8, B31]
[B2, B22, B23]
(B33) $\Gamma \neg \neg x=\neg x$:

$$
\begin{aligned}
\Gamma \neg \neg x & =\neg \neg \neg x \\
& =\neg x .
\end{aligned}
$$

Now we are able to prove the axioms A4, A6 and A7.
Axiom A4 $\sim \sim x=x$:
First, we observe that from B14 and D2 we obtain: $(\mathrm{D} 3) \sim x=(x \wedge \Gamma x) \vee \neg x$.
Then
(1) $\sim \sim x=(((x \wedge \Gamma x) \vee \neg x) \wedge \Gamma((x \wedge \Gamma x) \vee \neg x)) \vee \neg((x \wedge \Gamma x) \vee \neg x), \quad$ [D3]
(2) $\Gamma((x \wedge \Gamma x) \vee \neg x))=\Gamma((x \vee \neg x) \wedge(\Gamma x \vee \neg x))$

$$
\begin{align*}
& =\Gamma((x \vee \neg x) \wedge \Gamma x) \\
& =\neg \neg x, \tag{B29}
\end{align*}
$$

[B14]
(3) $\sim \sim x=(((x \wedge \Gamma x) \vee \neg x) \wedge \neg \neg x) \vee \Gamma \Gamma x$
$=(((x \wedge \Gamma x) \wedge \neg \neg x) \vee(\neg x \wedge \neg \neg x)) \vee \Gamma \Gamma x$ $=((x \wedge \Gamma x) \wedge \neg \neg x) \vee \Gamma \Gamma x$
[B2]
$=((x \wedge \Gamma x) \vee \Gamma \Gamma x) \wedge(\neg \neg x \vee \Gamma \Gamma x)$
$=((x \wedge \Gamma x) \vee \Gamma \Gamma x) \wedge \neg \neg x$
[B22, B23]
$=((x \vee \Gamma \Gamma x) \wedge(\Gamma x \vee \Gamma \Gamma x)) \wedge \neg \neg x$
$=(x \vee \Gamma \Gamma x) \wedge \neg \neg x$
[B3]

$$
=x \wedge \neg \neg x
$$

[B23]
$=x$.
[B22]
Axiom $\mathrm{A} 6 \sim x \vee \nabla x=1$:

$$
\begin{array}{rlr}
\sim x \vee \nabla x & =(x \wedge \Gamma x) \vee \neg x \vee \neg \neg x & {[\mathrm{D} 3, \mathrm{D} 1]} \tag{D3,D1}\\
& =(x \wedge \Gamma x) \vee 1=1 . & {[\mathrm{B} 18]}
\end{array}
$$

Axiom A7 $x \wedge \sim x=\sim x \wedge \nabla x$:

$$
\begin{align*}
\sim x \wedge \nabla x & =((x \wedge \Gamma x) \vee \neg x) \wedge \neg \neg x \tag{D3,D1}\\
& =(x \wedge \Gamma x \wedge \neg \neg x) \vee(\neg x \wedge \neg \neg x) \\
& =(x \wedge \Gamma x) \vee 0 \\
& =(x \wedge \Gamma x) \vee(x \wedge \neg x) \tag{B2}\\
& =((x \wedge \Gamma x) \vee x) \wedge((x \wedge \Gamma x) \vee \neg x) \\
& =x \wedge \sim x
\end{align*}
$$

[B22, B2]
[D3]
(B34) If $x \leq y$ then $\neg y \leq \neg x$ and $\Gamma y \leq \Gamma x$:
(1) $x \leq y$,
[Hip.]
(2) $x \vee y=y$,
[(1)]
(3) $\neg(x \vee y)=\neg y$,
[(2)]
(4) $\neg x \wedge \neg y=\neg y$,
$[(3), \mathrm{B} 7]$
(5) $\neg y \leq \neg x$,
(6) $x \wedge y=x$,
(7) $\Gamma(x \wedge y)=\Gamma x$,
(8) $\Gamma x \vee \Gamma y=\Gamma x$,
[(4)]
[(1)]
[(6)]
(9) $\Gamma y \leq \Gamma x$.
$[(7), \mathrm{B} 6]$
[(8)]
$(\mathrm{B} 35) \sim \Gamma x=\Gamma \Gamma x:$

$$
\begin{array}{rlr}
\sim \Gamma x & =\Gamma \Gamma x \wedge(\Gamma x \vee \neg \Gamma x) \\
& =\Gamma \Gamma x \wedge(\Gamma x \vee \Gamma \Gamma x) \\
& =\Gamma \Gamma x .
\end{array}
$$

(B36) $\sim(\neg x \wedge \Gamma y)=\neg \neg x \vee \Gamma \Gamma y:$
$(1) \sim(\neg x \wedge \Gamma y)=\Gamma(\neg x \wedge \Gamma y) \wedge((\neg x \wedge \Gamma y) \vee \neg(\neg x \wedge \Gamma y))$,
[D2]

[^0]: Received September 28, 2013. Revised September 6, 2014.

