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Abstract

Auxiliary plasma heating by radio-frequency waves is a usual procedure in the
modern tokamaks. In the case of He minority heating is analysed the equilib-
rium distribution function for minority species and the factor modification of the
Maxwellian form is plotted for specific parameters values as function of radial co-
ordinate and normalized velocity. The energetic minority tail develops with the
heating.

1 Introduction

The use of radio-frequency (rf) power in magnetic fusion devices has many important
goals: heating plasma, current drive and profile control. Using rf power in the ion cy-
clotron resonance frequency (ICRF) to drive poloidal flow with radial velocity shear can
stabilize microturbulence and improve plasma confinement.

In the present paper we consider a magnetically confined plasma in the presence of
ion cyclotron resonant heating (ICRH) in the minority scheme. The knowledge of the
distribution function is a key problem to solve both the heating efficiency of the plasma
and the transport problem. The impact of ICRF heating on the distribution functions of
various constituients are largely discussed in literature, see for example [1] - [7]. The plan
of the paper is as follows:

In the section I, the frame and conditions of the simplified quasi-linear Fokker-Planck
equation (QLFPE) is introduced. In the section II, the solution of the QLFPE is given in
the condition of velocity space isotropy and the modification of the distribution function
due to the presence of radio-frequency waves is evaluated. In the last section, for some
specific values of parameters, the factor modification of the distribution function from
Maxwellian is plotted and the results are discussed.



2 Quasilinear Fokker-Planck Equation

We consider a non-ohmic multi-component plasma heated at the ion cyclotron resonance
for minority species, m. Let us consider the case of a low concentration of ions *He
colliding with a thermal background plasma, composed by Deuterium and electrons. The
3H e minority is about 2% —3% of the density of the background plasma and it is heated by
ion cyclotron resonant heating. We shall limit ourselves to analyze the so-called simplified,
quasi-linear, Fokker Planck equation where it is taken into account only the contribution
due to the perpendicular component of the electric field, Ei“, which is concordant to
the direction of rotation of the minority. We then neglect the contributions due to the
perpendicular component of the electric field, £, which is discordant to the direction
of rotation of the minority, and the one due to the parallel component of the electric
field, Ey. Under these conditions, in the velocity space, the long term evolution of the
distribution function for the high frequency heated ions, is governed by the equation

oy, Y) i;(ty’t) = V- S™(F") + P(F") (1)
where
S"(F™) = SR(F™) + Y Sre(FE) @

Suffices m and « [with m = 3He and « = (e, D)] distinguish the minority population and
the species of the background plasma, respectively. The first term in Eq. (2) describes the
quasi-linear diffusion due to the resonant wave particle interactions (RF contribution).
The second term in Eq. (2) is due to the collisional operator. P(F™) takes into account
other auxiliary sources; in our analysis, we shall put P(F™) = 0. The gradient operator,
V, is defined as the row vector V = (0,,,0,,,0,.) in the velocity space, whilst V - A s
the matrix multiplication between the gradient vector and the matrix A. S and the
simplified quasi-linear term, S™, can be written as

Sye(F) = ~[v - (0"

m(2)

S (F™) = [V - Dy

fm)]T + Dgla(l)f'm (3)
FT + D Fm

= 2 = m(2

where the expressions of the matriz diffusion coefficients (Dlm( )and DV?,( ), for the colli-
sional and the RF contributions, respectively) and the drift vector coefficients (]_Dlm(l)and
f)’v'[l,(l), for the collisional and the RF contributions, respectively) have been introduced. T’
denotes the transpose operation. We shall provide the stationary solution, 7™, of Eq. (1)

in terms of the variables w defined as
v 2T,
w = v Vihm =
Vihm My,

(4)
where T, , m,, , v denote the temperature, mass and velocity of the minority species,
respectively. For the minority species (v = m), introduce notation

k“ Vihm
Qem

kLvthm — w Zm €B0
) 5 = —, W= ) Qcm = ’ 5
+ Qcm Qcm mm,c ( )

§ =

with €., denoting the Larmor gyro-frequency of the minority, Z,, the charge number of
the minority and vy, the thermal velocity of the minority species.
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3 Solution of the quasilinear equation assuming isotropy

In the case of minority heating it is sufficient to regard the heated ions (m = ®He) as test
particles colliding with a Maxwellian background plasma. Owing to the weak nonlinearity
of the Fokker-Planck operator this is usually an acceptable approximation. If the applied
power is not too large we can (as a first approximation) simplify the QLFPE further by
neglecting the anisotropy which develops in the ion distribution function, F™(w) , which
should satisfy the following one dimensional, steady-state, Fokker-Planck equation [7]

1 dF™ v,
m f = _2 (112 w (6)
Fmodw U, (w) + 2w (D (fﬂ«U)>ql
with the solution
r ) udu
F (w) = Fexp | —2 / bl ()
5 \ch + 2u (fLu)>ql
where
m/3 m/e m/D
U, (w) = ZL\I; (Vthmw) " (Vthmw> Ly (vthmw> ()
3 Vm Vthp Vm Vthe Vm VihD
yBT, Vi ) ymleT, (vth ) vy <Vth )
v (w) = By My ) = 2y Tw | + g )(9
(w) % v Tp (Uthﬁ vy 1. Vihe vy Tp VihD ©)
1 2
V() = — [erf (u) — ﬁu exp (UQ)} Chandrasekhar function (10)
and FJ* = F™ (w = 0) is the normalization integral. With simplified notations
m/D
Vihm v Vihm
Alw) = V| —w)| + v < w) 11
w) (Vthc ) vm/e VihD ()
Tm Vihm v m/D Tm Vihm,
B = —VU — VU 12
(w) Te ( Vihe w) + l/'m/c TD VihD v ( )

the solution (7) becomes

F (w) = Fyexp | -2 / B(u) udu (13)

) Au) + 2u-—rm <ﬁ ({lu)>ql

Moreover, the isotropic part of the normalized quasilinear diffusion operator, see for
example [6], reads as

(D€ ), = &/dx (1-%) 52 (€0 (1= ) (14)

with D, given in terms of the ’initial’ heating rate (when the distribution function is a
Maxwellian)

le
Dp _ abs (15)

o0

4nmmm/w3 J2 (£ w)exp (—w?) dw

0




Here, J,(z) indicates the Bessel functions of the first kind, P! is the power per unit
volume supplied to the system, n,, is the number density of the minority species and
A the pitch angle, respectivelly. The coefficients D, (with dimension of v,,v%, ) are

proportional to the power available per ion of the heated species.

i (D (€L w))
(D (g w)), = e (16)

VmVihm

the equation (13) reads as

B (u) udu
)+ 2 <D(§LU’)>ql

e

F (w) = Ftexp Z/A( (17)
u

with Fg" = Fg*(r ;w = 0). When (D (§,w)), = 0 and all species have the same
temperature, F™ (w) reduces to unperturbed Maxwellian, Fi?(w),
v (w) = 75" exp(—w?) (18)

The equilibrium distribution function F™(w) corresponding to the minority species
heated by rf heating will be assumed of the form

F™(w) = X" (r) Fyp(w) (19)
and so
m B (u) udu
X7 =exp{ w® — 2/ (D(éw)) l (20)
0 (U) +2u vz l/m/g

To lowest order in the thermal Larmor radius, for mlnorlty heating (p = 0),

Plzn
Dy = abs (21)

o0

4nmmm/w3 J2 (& w)exp (—w?) dw

0

It is easily checked that in the limit £, w < 1, we find

[ee]

1
/wSJ (§Lw)exp (—w )dwﬂ§ , for w1
0
and
le
o= PO e (22)

As can be seen from (11) and (12), the collisions between minority species (seen as a
test particle) and the background particles (electrons and majority ion species) are taking
into account through the quantities A (r,w) and B (r,w) .

With

- Vm/D + Vm/c ~ Vm/D (23)



we have

/w B(r, u) udu

D(E1u ;1)
o A(ru) + 2u7

V Vm/e

X7 (r,w) = exp { w? — 2

With collision frequencies, see for example [§],

npee? In A

v = 4r e
mavTa
we obtaine
2 4 m/D
mje 4 NeZme’ A m\D _ npeed InA v/ 5 D
v =4 2 3 Y =4 2 3 ) m/e _Z
m2 Vi, m2 Vi, v Ne

Vin np Vih
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Tm m T m
B(r,w) = WU (Vth ) p 72 imy (Vth w)

T: Vihe ne Tp VinD

4 Conclusions and discussions

(24)

(25)

(26)

(27)

In the following we take particular values of the parameters in order to plot numerically
the function x7* (w). The perpendicular wave number k, is assumed as k; ~ 1/p;,, and
80 &, = k1Vinm/Qem = 1. The initial density radial profiles for electron and Deuterium

majority ion species are given in Fig.1 and Fig.2, respectively.
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Fig.1 Electron density radial profile.
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Fig.2 Majority ion species (Deuterium) density radial profile.

Also the initial temperature (before heating) radial profiles for electron (Fig.3) and
3 He minority species (Fig.4) are given.
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Fig.3 Electron temperature radial profile.
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Fig.4 Minority ion species (*He) temperature radial profile.
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Fig.5 Safety factor ¢
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Fig.6 Power density absorption P" radial profile.
If the ion velocity distribution is Maxwellian the absorbed rf power density, (P),
averaged on the flux surface has a Gaussian profile within the resonance layer,

Pt s (P = Pyexp | - 7 2005 0res)”
abs 9 (AX)2

where 0,., is the poloidal angle corresponding to the central vertical axes of the resonance

layer, a the minor radius and

Ej v
AX ~ Ryl

chi,O (28)
We assume the resonance absorption layer is centered near the magnetic axes on the
higher magnetic field side (6,..; = 0.517) with a maximum value P4" = 50 W/em? of the
power density absorption (see Fig.6).
In this conditions we plot numerically the function x}" (r,w) for two values of the
normalized velocity (w = 0.7 and w = 1) of the minority species - see Fig7.
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Fig.7 The deformation factor x* (r,w) of the Maxwellian distribution as function of r
for two fixed values of w. (Here £, = 1).

The distribution function for the heated minority species is modified in the region of the
power absorption and is more pronounced with higher w. We note that the validity of
equation (24) is restrictioned by the condition £, w < 1 . So, for lower values of k
(equivalently ¢ | ) we can study for higher values of w.

A value of x7" (r) > 1 (for given w) leads to a higher value of the distribution function
F™(r) and so to a higher density n,, and density gradient. This situation can not last
because of diffusion.

For a position well inside the resonance layer ( e.g r = a/6) the factor 7" (w) increase
monotonically when w is incresing (see Fig.8). An interesting situation appear in the
region with low absoption (at border of the resonance layer) where the factor x7* (w) has
a non-monotonically variation with a minimum at w ~ 1 and x7* < 1 for this spatial
region and £, w < 3/4 - see Fig.9. This also show that the heating develops the high
energetic minority tail.
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Fig.8 The factor x7" (w) for r = a/6 and &, = 1/2.






