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Abstract—The paper considers the sparse filtering problem
under arbitrary norm-bounded exogenous disturbances. We
propose a simple and universal observer-based approach to
its solution, based on the LMI technique and the method of
invariant ellipsoids; it allows the use of a reduced number of
system outputs. From a technical point of view of application,
we reduce the original problem to semi-definite programming,
which is easily solved numerically. The proposed simple approach
is easy to implement and can be equally extended to systems in
continuous and discrete time.

Index Terms—linear system, filtering, sparsity, exogenous dis-
turbances, linear matrix inequalities, invariant ellipsoids

I. INTRODUCTION

In the modern literature, the term sparse filtering is mainly
assigned to such areas as machine learning, pattern recogni-
tion, signal and image processing; see, for example, [1]–[5]. In
many situations, the classical assumption that the disturbances
are random is not justified. Frequently, it is known that
the disturbances are bounded only. In this case, guaranteed
estimates of states can be constructed. This approach was pro-
posed in the works of Witzenhausen, Bertsekas and Rhodes,
Schweppe [6]. At about the same time, similar problems
were developed by such researchers as Kurzhansky [7]. A
significant contribution to this circle of research was made
by Chernousko [8].

In the papers [9], [10], the problem of filtering with
nonrandom bounded exogenous disturbances was considered,
but only for stationary problem statements. Moreover, a state
estimate was sought such that its residual is guaranteed to be
enclosed in a single so-called invariant ellipsoid. The filter
was also sought as the linear stationary filter. In this class,
the problem turned out to be completely solvable, so that it
was possible to construct an optimal filter and state estimate.
From a technical point of view, the LMI apparatus [11] was
used in [9], [10]. The LMI technique has proven itself well in
the analysis and design (see, e.g. [12], [13]), but has not been

This work was supported by the Russian Science Foundation, project no. 21-
71-30005.

widely used in filtering problems. A systematic presentation
of this technique is given in the monograph [14].

On the other hand, the sparsity ideas are widely used in
the various fields (e.g., see [15], [16]), but not in control. We
mention publications [17], [18] devoted to the sparse feedback
design. In [19], a new approach to constructing a sparse
feedback was proposed, which is associated with minimizing
nonzero rows or nonzero columns of the matrix. Such matrices
are called row-sparse and column-sparse, respectively.

This method is distinguished by simplicity: the initial prob-
lems are reduced to solving low-dimensional convex opti-
mization problem, and for its numerical solution one can use
standard tools, such as MATLAB-based package YALMIP [20]
and cvx [21], [22]. We mention the versatility of the proposed
approach as continuous- and discrete-time cases are considered
uniformly, and it is applicable to both linear state and output
feedback design. At last, we stress its extendability to the
various robust formulations, as well as to the optimal control
problems, etc.

This paper is a natural continuation of [9], [10], and [19].
It proposes an approach to the solution of the sparse filtering
problem, that is, filtering using a reduced number of outputs
in the presence of arbitrary bounded exogenous disturbances.

Throughout the following, ∥ · ∥ is the Euclidean norm of a
vector and the spectral norm of a matrix, T is the transposition
symbol, Sn×n is the class of symmetric real n×n matrices, I
is the identity matrix of appropriate dimension, and all matrix
inequalities are understood in the sense of the sign definiteness
of the matrices.

The present paper is the revised and expanded version of
talk [23] presented at the IEEE 25th International Conference
on System Theory, Control and Computing (ICSTCC 2021).
In particular, a number of additions have been made to the text
of the article, and the list of references has been significantly
expanded and updated.

II. SPARSE CONTROL

Let us recall the main ideas of the above mentioned ap-
proach to the construction of sparse control. Let Ω ∈ Rn×p;
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we introduce into consideration the following matrix norms:

∥Ω∥r1 =

n∑
i=1

max
1≤j≤p

|ωij |, ∥Ω∥c1 =

p∑
j=1

max
1≤i≤n

|ωij |.

The following result stated in [19].
Theorem 1: If the problem

min ∥Ω∥r1 s.t. AΩ = B,

where A ∈ Rm×n, m < n, B ∈ Rm×p, Ω ∈ Rn×p, is feasible,
then there exists a solution with no more than m nonzero rows.

A similar result can be stated for the c1-norm.
The approach developed in [19] allows the regular design

of sparse controls in various statements. In particular, consider
the linear system in continuous time

ẋ = Ax+Bu (1)

with state x ∈ Rn and control input u ∈ Rm, i.e. A ∈ Rn×n,
B ∈ Rn×m; the pair (A,B) is controllable.

The goal is to construct a sparse stabilizing control

u = Φx,

in the sense of zero components of the control vector. So, we
are interesting in finding the row-sparse stabilizing controller
Φ ∈ Rm×n, i.e. having zero rows.

The technique required to obtain this result will be used in
the sequel. It is well known, the matrix A+ BΦ is stable iff
there exists matrix Ω ≻ 0 such that

(A+BΦ)
T
Ω+ Ω(A+BΦ) ≺ 0.

Pre-multiplying and post-multiplying this inequality by the
matrix Ξ = Ω−1 we obtain the inequality

AΞ + ΞAT +BΦΞ + ΞΦTBT ≺ 0.

Finally, introducing a new matrix variable Ψ = ΦΞ, we obtain
the LMI

AΞ + ΞAT +BΨ+ΨTBT ≺ 0, Ξ ≻ 0, (2)

in the matrix variables Ξ ∈ Sn×n and Ψ ∈ Rm×n. Therefore,
any stabilizing gain matrix for system (1) is presented by the
expression

Φ̂ = Ψ̂Ξ̂−1

where the matrices Ξ̂ and Ψ̂ satisfy (2).
It is clear, right multiplication preserves the row-sparse

structure of the matrix. Therefore, if the solution Ψ̂ of the lin-
ear matrix inequality (2) is row-sparse, then the gain matrix Φ̂
is row-sparse. Hence, the row sparsity of the matrix Ψ can
be achieved by minimizing its r1-norm. Thus, the following
statement holds.

Statement 1 ([19]): The solution Ξ̂ and Ψ̂ of the convex
optimization problem

min ∥Ψ∥r1 s.t. AΞ + ΞAT +BΨ+ΨTBT ≺ 0, Ξ ≻ 0,

in the matrix variables Ξ ∈ Sn×n and Ψ ∈ Rm×n, defines the
row-sparse stabilizing gain matrix

Φsp = Ψ̂Ξ̂−1

for system (1).
With Statement 1, we detect the stabilizing control inputs.

These controls are determined by nonzero rows of the ma-
trix Φsp. Evidently, we can not state that the resulting solution
will be row-sparse, but it is expected by virtue of Theorem 1.

The author apply these ideas to the sparse filtering problem
stated in the next section.

III. CONTINUOUS-TIME CASE

A. Filtering problem

Consider the dynamical system

ẋ = Ax+Bν, x(0) = x0,

y = Cx+Dν,
(3)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rl×m, C ∈ Rl×n, with
state x(t) ∈ Rn, observed output y(t) ∈ Rl, and exogenous
disturbances ν(t) ∈ Rm satisfying the constraint

∥ν(t)∥ ≤ 1 for all t ≥ 0; (4)

the pair (A,B) is controllable and the pair (A,C) is observ-
able. Let the state x of system (3) be unavailable, and the
information about the system is provided by its output y.

We construct a linear filter described by the differential
equation

˙̂x = Ax̂+ F(y − Cx̂), x̂(0) = 0.

We emphasize that only the constant matrix F ∈ Rn×l is to
be chosen.

The goal is to find the minimal (in the certain sense)
invariant ellipsoid containing the residual

ρ(t) = x(t)− x̂(t).

The application of the ideology of invariant ellipsoids to
control systems is described in [11], [14] in detail. Recall that
the ellipsoid

Vx =
{
x ∈ Rn : xTΞ−1x ≤ 1

}
, Ξ ≻ 0,

is called invariant for a dynamical system if the condition
x(0) ∈ Vx yields x(t) ∈ Vx for all times t ≥ 0. So, any
trajectory of the system, starting from any point lying inside
the ellipsoid Vx, at any time instant will be in this ellipsoid
for all admissible exogenous disturbances.

By virtue of the attractiveness property of an invariant ellip-
soid, the filtering accuracy is asymptotic for large deviations,
and the filtering accuracy is uniform in t for small deviations.

There are many invariant ellipsoids, the goal is to find the
minimum one and, to minimize it over F . It is convenient for
us to assume that the minimal ellipsoid has the minimal trace
of its matrix. In [9], the following result was stated.
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Theorem 2: Let Ω̂ and Ψ̂ be the solution of the optimization
problem

min trΥ

under the constraints(
ATΩ+ ΩA−ΨC − CTΨT + µΩ ΩB −ΨD

BT
1 Ω−BT

2 Ψ
T −µI

)
⪯ 0,(

Υ I
I Ω

)
⪰ 0, Ω ≻ 0,

with the matrix variables Ω ∈ Sn×n, Ψ ∈ Rn×l, Υ ∈ Sn×n,
and the scalar parameter µ > 0.

Then the optimal filter matrix gives as

F̂ = Ω̂−1Ψ̂,

and minimal invariant ellipsoid for the residual of (3) with
x0 = 0 defined by the matrix

Ξ̂ = Ω̂−1.

B. Sparse filtering

We will seek a sparse solution of the filtering problem for
system (3), (4). Note, that the filter matrix F has the form

F = Ω−1Ψ.

Therefore, if the matrix Ψ be column-sparse, then the corre-
sponding filter matrix F be column-sparse as well. In turn,
the column sparsity of the matrix Ψ can be achieved by
minimizing its c1-norm.

Thus, we have the following algorithm, which involves the
execution of three consecutive steps.

Algorithm 1:

Step 1. Solving the optimization problem

min trΥ (5)

under the constraints(
ATΩ+ ΩA−ΨC − CTΨT + µΩ ΩB −ΨD

BT
1 Ω−BT

2 Ψ
T −µI

)
⪯ 0,

(6)(
Υ I
I Ω

)
⪰ 0, Ω ≻ 0, (7)

in the matrix variables Ω ∈ Sn×n, Ψ ∈ Rn×l, Υ ∈ Sn×n, and
the scalar parameter µ > 0, we obtain the values Ω∗, Ψ∗, and
Υ∗ which define the matrix

F∗ = (Ω∗)−1Ψ∗

of the optimal filter, and the matrix

Ξ∗ = (Ω∗)−1

of the minimal invariant ellipsoid for the residual, and the
corresponding value

J ∗ = trΥ∗

of the cost function.

Step 2. Having the value J ∗, we implement the relaxation
coefficient λ > 1 and consider c1-optimization problem

min ∥Ψ∥c1 s.t. (6), (7) and trΥ ⪯ λJ ∗ (8)

in the matrix variables Ω ∈ Sn×n, Ψ ∈ Rn×l, Υ ∈ Sn×n, and
the scalar parameter µ > 0.

By virtue of the properties of the c1-norm, one can expect
the occurrence of zero columns in the solution Ψ̂0 of this
problem.

Step 3. We resolve the problem (5)–(7) with the additional
constraint that the matrix variable Ψ has zero columns at the
same places as the matrix Ψ̂0. Its solution Ω̂, Ψ̂ defines the
column-sparse filter matrix

F̂ = Ω̂−1Ψ̂

and the matrix Ξ̂ = Ω̂−1 of the corresponding invariant
ellipsoid for the residual.

In section V, it will be shown by example that the proposed
procedure leads to highly sparse matrices of the filter with
small losses in terms of the cost criterion.

Remark 1: If we have a priori information about the initial
condition x(0) ∈ V0 of the system, where

V0 = {x ∈ Rn : xTΞ−1
0 x ≤ 1}.

Then, letting x̂(0) = 0, we can guarantee that ρ(0) ∈ V0. If
we prescribe that

V0 ⊂ V,

then we can guarantee that ρ(t) ∈ V for all t ≥ 0.
Accordingly, if we add the condition

Ω ⪯ Ξ−1
0

to the constraints (6)–(7) in Algorithm 1, then we obtain not
only asymptotic, but uniform estimate of the sparse filtering
accuracy.

Remark 2: Often it is necessary to evaluate the quality of
filtering not all coordinates of the state x, but only some of
coordinates. Let us have the output

z = Czx

and the goal is to make the residual of its estimate

ρz = z − ẑ = Cz(x− x̂)

as small as possible. The solution of this problem is achieved
by replacing the first of the conditions (7) by(

Υ Cz

CT
z Ω

)
⪰ 0.

IV. DISCRETE-TIME CASE

The analogous results can be established for the dynamical
system

xk+1 = Axk +Bνk,

yk = Cxk +Dνk,
(9)

3
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where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rl×m, C ∈ Rl×n, with
initial condition x0, state xk ∈ Rn, observed output yk ∈ Rl,
and exogenous disturbance νk ∈ Rm, satisfying the constraint

∥νk∥ ≤ 1 for all k = 0, 1, 2, . . . (10)

Let the pair (A,B) is controllable and the pair (A,C) is
observable.

We construct a filter described by the difference equation

x̂k+1 = Ax̂k + F(yk − Cx̂k), x̂0 = 0,

for the state estimate x̂k with a fixed matrix F ∈ Rn×l.
Introduce the residual

ρk = xk − x̂k.

The problem is to find the matrix F that ensures the minimality
of the invariant ellipsoid V containing the residual ρk.

The following theorem holds.
Theorem 3 ([14]): Let Ω̂ and Ψ̂ be the solution of the

optimization problem
min trΥ

under the constraints −µΩ (ΩA−ΨC)
T

0
ΩA−ΨC −Ω ΩB −ΨD

0 (ΩB −ΨD)
T −(1− µ)I

 ⪯ 0,

(
Υ I
I Ω

)
⪰ 0, Ω ≻ 0,

in the matrix variables Ω ∈ Sn×n, Ψ ∈ Rn×l, Υ ∈ Sn×n, and
the scalar parameter 0 < µ < 1.

Then the optimal filter matrix is given by the expression

F̂ = Ω̂−1Ψ̂,

and the matrix of the minimal invariant ellipsoid for the
residual ρk for system (9) with x0 = 0 is given by the
expression

Ξ̂ = Ω̂−1.

The search procedure for a sparse solution of the filtering
problem for system (9), (10) also involves performing three
consecutive steps.

Algorithm 2:
Step 1. We solve the optimization problem

min trΥ (11)

under the constraints −µΩ (ΩA−ΨC)
T

0
ΩA−ΨC −Ω ΩB −ΨD

0 (ΩB −ΨD)
T −(1− µ)I

 ⪯ 0, (12)

(
Υ I
I Ω

)
⪰ 0, Ω ≻ 0, (13)

with the matrix variables Ω ∈ Sn×n, Ψ ∈ Rn×l, Υ ∈ Sn×n,
and the scalar paramater µ > 0.

The values Ω∗, Ψ∗, and Υ∗ define the matrix

F∗ = (Ω∗)−1Ψ∗

of the optimal filter, the matrix

Ξ∗ = (Ω∗)−1

of the minimal invariant ellipsoid for the residual, and the
optimal value

J ∗ = trΥ∗

of the cost function.
Step 2. Having the value J ∗, we implement the relaxation

coefficient λ > 1 and solve the optimization problem

min ∥Ψ∥c1 s.t. (12), (13), and trΥ ⪯ λJ ∗

in the matrix variables Ω ∈ Sn×n, Ψ ∈ Rn×l, Υ ∈ Sn×n, and
the scalar parameter 0 < µ < 1. Due to the properties of the
c1-norm, one can expect the appearance of zero columns in
its solution Ψ̂0.

Step 3. We resolve the original problem (11)–(13) where
the same arrangement of zero rows is fixed in the matrix
variable Ψ as in the column-sparse matrix Ψ̂0. Its solution
Ω̂, Ψ̂ defines the column-sparse filter matrix

F̂ = Ω̂−1Ψ̂

and the matrix
Ξ̂ = Ω̂−1

of the corresponding invariant ellipsoid for the residual.
Remarks 1 and 2 remain valid in the discrete-time state-

ments.
As the results of numerical simulations show, the “payment”

for using a reduced number of controls/outputs (i.e., a loss in
terms of cost function) is usually very small.

V. EXAMPLE

Consider the HE3 problem borrowed from COMPleib [24]
benchmark library. This library contains various problems
having a clear engineering origin and using to test the efficacy
of the proposed approaches. The considered linearized system
describes the dynamics of the Bell201A-1 helicopter.

The matrices of the considered system have the following
form:

A =



−0.0046 0.038 0.3259 −0.0045 −0.402 −0.073 −9.81 0
−0.1978 −0.5667 0.357 −0.0378 −0.2149 0.5683 0 0
0.0039 −0.0029 −0.2947 0.007 0.2266 0.0148 0 0
0.0133 −0.0014 −0.4076 −0.0654 −0.4093 0.2674 0 9.81
0.0127 −0.01 −0.8152 −0.0397 −0.821 0.1442 0 0
−0.0285 −0.0232 0.1064 0.0709 −0.2786 −0.7396 0 0

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0



4

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL, VOL. 2, NO. 1, JUNE 2022, pp. 1-7 



B =



0.0676
−1.1151
0.0062
−0.017
−0.0129
0.139
0
0


, C =


0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

 , D =


0
0.1
0
0

0.05
0



Here the state vector is given as

x =
(
uH σ h v p r θ φ

)T
,

where uH is the forward velocity, h is the pitch rate, σ is the
vertical velocity, p is the roll rate, v is the lateral velocity, r is
the yaw rate, φ is the roll angle, θ is the pitch angle, and the
output vector is

y =
(
σ θ φ r h p

)T
.

Setting Ξ0 = 0.1I and using Theorem 2, at the first step
of Algorithm 1 we obtain the optimal filter matrix F∗ and

the corresponding invariant ellipsoid for the residual with
matrix Ξ∗ such that

tr Ξ∗ = 1.1381.

At the second step, solving the c1-optimization problem (8)
for λ = 10, we obtain the matrix Ψ̂0 with two last columns
of the order of 10−10.

At the third step, fixing these rows as zero and resolving the
original problem, we obtain the column-sparse filter matrix F̂
and the invariant ellipsoid Ξ̂ for the residual with

tr Ξ̂ = 1.2131.

F∗ =



−3.3724 −0.6504 0.0449 0.7496 1.8176 −0.6771
1.2395 −10.5478 −0.0284 −0.2938 −0.9630 0.2334
0.8538 −0.1075 −0.0023 −0.1830 −0.0243 −0.1172
−0.0429 0.0287 9.8102 0.3401 −0.3943 −0.4499
−0.3655 0.0872 1.0006 −0.1138 −0.4393 −0.5462
0.2890 1.2176 0.0021 −0.4221 0.3213 −0.0226
6.8280 −0.7092 −0.0062 −0.9332 0.7106 0.0687
0.0073 −0.0000 0.2784 0.0000 0.0000 −0.0000



Ξ∗ =



0.3714 −0.1278 −0.0139 0.0007 0.0036 0.0124 −0.0377 0.0000
−0.1278 0.1602 0.0065 −0.0003 −0.0017 −0.0058 0.0177 −0.0000
−0.0139 0.0065 0.1007 −0.0000 −0.0002 −0.0006 0.0019 −0.0000
0.0007 −0.0003 −0.0000 0.1000 0.0000 0.0000 −0.0001 −0.0000
0.0036 −0.0017 −0.0002 0.0000 0.1000 0.0002 −0.0005 0.0000
0.0124 −0.0058 −0.0006 0.0000 0.0002 0.1006 −0.0017 0.0000
−0.0377 0.0177 0.0019 −0.0001 −0.0005 −0.0017 0.1052 −0.0000
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000 0.1000



Ψ̂0 =



−0.4093 −2.0441 0.1151 −0.1159 0 0
0.4093 −2.0441 −0.2968 −0.2514 0 0
0.4093 2.0441 −1.0477 −0.0129 0 0
0.0724 −0.3055 1.9967 0.2514 0 0
−0.4093 −0.3780 1.9967 −0.2514 0 0
−0.4093 2.0441 1.1985 0.2514 0 0
−0.2441 2.0441 1.9967 0.2514 0 0
−0.0143 −0.4028 1.9967 0.0245 0 0



F̂ =



−1.4878 0.6754 0.0519 0.5895 0 0
0.7782 −11.1508 −0.3270 −0.2482 0 0
0.7283 0.0624 −0.0159 0.0733 0 0
−0.8973 −0.1698 9.9423 0.4216 0 0
−0.8263 −0.1289 1.0840 −0.0998 0 0
0.3308 1.3900 0.0164 −0.4074 0 0
8.0516 −0.0006 −0.5781 −0.9786 0 0
0.1116 0.0000 0.3123 −0.0170 0 0


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Ξ̂ =



0.4183 −0.1314 0.0026 −0.0146 −0.0251 0.0179 −0.0083 −0.0147
−0.1314 0.1571 0.0013 0.0007 0.0069 −0.0076 0.0104 0.0050
0.0026 0.0013 0.1019 −0.0044 −0.0030 −0.0000 0.0055 −0.0010
−0.0146 0.0007 −0.0044 0.1105 0.0076 −0.0004 −0.0125 0.0026
−0.0251 0.0069 −0.0030 0.0076 0.1062 −0.0011 −0.0077 0.0024
0.0179 −0.0076 −0.0000 −0.0004 −0.0011 0.1010 −0.0010 −0.0007
−0.0083 0.0104 0.0055 −0.0125 −0.0077 −0.0010 0.1170 −0.0022
−0.0147 0.0050 −0.0010 0.0026 0.0024 −0.0007 −0.0022 0.1011


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Fig. 1. Filtering the coordinate x1.

Thus, we construct the sparse filter not using the out-
puts y5 = h (pitch rate) and y6 = p (roll rate), wherein the
loss by the cost criterion is 6.5% only.

In the Fig. 1, the solid line depicts the trajectory x1(t) =
uH (forward velocity) of the system for some admissible
exogenous disturbance, the dashed line depicts its optimal
estimate x̂1(t), and the red dotted line depicts the result x̃1(t)
of using the proposed sparse filtering procedure.

For the coordinate x4 = v (lateral velocity), the sparse
filtering accuracy is even higher, see Fig. 2.

The quality of filtering by other coordinates is also quite
high.

From a computational point of view, the computations
according to Algorithm 1 do not present any technical difficul-
ties. At all its steps, we are dealing with convex optimization
problems, for which the MATLAB-based cvx package men-
tioned in the introduction can be effectively used.

VI. CONCLUSION

We propose an approach to the sparse filtering problem
under nonrandom bounded exogenous disturbances using an
observer. The approach is based on the LMI technique and
the method of invariant ellipsoids. Using of this concept made
it possible to reduce the original problem to a semidefinite
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Fig. 2. Filtering the coordinate x4.

programming that can be easily solved numerically. The
approach is simple and easily implementable; it equally covers
both continuous- and discrete-time cases.

In the future, the author plans to expand the results obtained
to the various robust formulations of the problem, in particular,
to the system

ẋ = (A+ F∆H)x+Bν

subjected to norm-bounded matrix uncertainty ∆ ∈ Rp×q ,
∥∆∥ ≤ 1, where F , H are given matrices of the appropriate
dimensions.
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Abstract—In this paper, we present the controller which glob-
ally stabilizes a non-stationary motion of a serial robot manipula-
tor with revolute joints without velocity measurements. A family
of desired manipulator motions is considered such that the first
vertical link of the manipulator performs a given rotation, and
the remaining links retain the given relative angular positions.
It is proved that such motions of the manipulator can be made
globally asymptotically stable using dynamic position feedback.
The problem is solved taking into account the periodicity of the
dynamics equations along the angular coordinates of the links. As
an example, a numerical simulation of the three-link manipulator
motion under the constructed controller is presented.

Index Terms—stabilization control problem, serial robot ma-
nipulator, revolute joint, dynamic position feedback, Lyapunov
function, cylindrical phase space

I. INTRODUCTION

In control theory, trajectory tracking is a fundamental prob-
lem. Trajectory tracking of a multi-link robot manipulators is
considered as challenging control problem due to nonlinearity
and non-stationarity of the dynamics equations. The main
approach to the solution of the trajectory tracking control
problem for a serial robot manipulator is the construction
of proportional derivative (PD) controller with feedforward
[1], [2]. Note that the use of a PD controller requires the
position and velocity measurements of the manipulator links.
In practice, the use of tachometers is fraught with difficulties.
This is, firstly, the noise of the signals of the measured
speeds, and secondly, the installation of tachometers makes
the robot heavier and increases its cost. In addition, in some
practically important tasks, for example the installation of
tachometers is impossible when the robot operates in an
aggressive environment, in a hot cell, etc.

The majority of work for control design of robotic manipu-
lators without velocity measurements uses the dynamic filters,
see [2]–[5]. For results related to the use of velocity observers
see [6], [7] and for nonlinear proportional integral controllers
and Volterra integro-differential equations see [8]–[12]. Due to

the complexity of the problem, results on the global trajectory
tracking of robot manipulators without velocity measurements
are scarce. Note that the problem on global output trajectory
tracking control of Euler-Lagrange systems has been solved
in [3] based on Lyapunov function method.

Motivated by the authors’ early works for the trajectory
tracking control problem of multi-link robot manipulators [13],
[14], in this paper, we give the solution to the global trajectory
tracking control problem without velocity measurements for
the revolute joined robotic arms with a vertical first link. The
key contributions of our paper can be written as follows:

1) We use the periodicity property of the robotic manipu-
lators equipped with revolute joints. Due to this property, we
construct the dynamic position feedback controller which is
bounded in position term and ensures the global attractivity of
the reference trajectory in a cylindrical phase space.

2) We ensure the global tracking of reference trajectories
such that the first link rotation angle is unbounded and
twice continuously differentiable function with both deriva-
tives bounded, and other link rotation angles are constant.

Throughout this paper, the following notation is used.
Symbol | · | indicates the vector norm in Rn. Symbol ∥ · ∥
denotes the operator matrix norm corresponding to the vector
norm | · |. λmin(·) and λmax(·) denote the smallest and largest
eigenvalues of some matrix respectively. Symbol K denotes
the Hanh functions class.

The paper is organized as follows. In Section II we present
the mathematical model of a robotic arm and define the
problem setting. Our main result is stated in Section III.
Example of a motion control for a three-link robot manipulator
that illustrates our main results is presented in Section IV.
Conclusions are provided in Section V.
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