

SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL

Vol. 2, No. 1, June 2022

ISSN 2668-2966

Editura UNIVERSITARIA Craiova, 2022 **CONTACT** SYSTEM THEORY, CONTROL AND COMPUTING JOURNAL University of Craiova, No. 13, A.I. Cuza Street, Craiova, 200585, Dolj, Romania Phone: 0251 438 198 Email: stcc.journal@ucv.ro Website: http://stccj.ucv.ro/

© 2022 – All rights reserved to Universitaria Publishing House The authors assume all responsibility for the ideas expressed in the materials published.

ISSN 2668-2966 ISSN-L 2668-2966

Editorial Team Editors and Publisher

Editors

Faculty of Automation, Computers and Electronics of The University of Craiova, Romania Faculty of Automation and Computers of The Politehnica University of Timişoara, Romania Faculty of Control Systems, Computers, Electrical and Electronics Engineering of The "Dunărea de Jos" University of Galați, Romania Faculty of Automatic Control and Computer Engineering of The "Gheorghe Asachi" Technical University of Iași, Romania

Publisher

Editura Universitaria, Str. A.I. Cuza, 13, 200585 Craiova, Romania <u>https://www.editurauniversitaria.ro/ro</u>

Editorial Board

Editor-in-Chief Vladimir RĂSVAN Prof., PhD University of Craiova, Faculty of Automation, Computers and Electronics, Str. A.I. Cuza 13, 200585 Craiova, Romania

Associate Editors-in-Chief

Radu-Emil PRECUP Corresponding member of The Romanian Academy Prof., PhD Politehnica University of Timisoara, Department of Automation and Applied Informatics, Bd. Vasile Pârvan 2, 300223 Timişoara, Romania Vasile MANTA Prof., PhD "Gheorghe Asachi" Technical University of Iași, Faculty of Automatic Control and Computer Engineering, Bd. Prof. dr. doc. Dimitrie Mangeron 27, 700050 Iasi, Romania Marian BARBU Prof., PhD "Dunărea de Jos" University of Galati, Faculty of Control Systems, Computers, Electrical and Electronics Engineering Str. Științei 2, 800210 Galați, Romania Dan SELIŞTEANU Prof., PhD University of Craiova, Faculty of Automation, Computers and Electronics, Str. A.I. Cuza 13, 200585 Craiova, Romania

Field Editors

Andrzej BARTOSZEWICZ, Technical University of Lodz, Poland Vincent CHARVILLAT, University of Toulouse, IRIT-ENSEEIHT, France Voicu GROZA, University of Ottawa, Canada László T. KÓCZY, Széchenyi István University, Győr, and Budapest University of Technology, Hungary Viorel MINZU, "Dunărea de Jos" University of Galați, Romania Silviu-Iulian NICULESCU, Paris-Saclay University, France Stefan PREITL, Politehnica University of Timișoara, Romania Octavian PĂSTRĂVANU, "Gheorghe Asachi" Technical University of Iași, Romania Imre J. RUDAS, Óbuda University, Budapest, Hungary, Ramon VILANOVA, Universitat Autonoma de Barcelona, Spain Mihail VOICU, "Gheorghe Asachi" Technical University of Iași, Romania

Associate Editors

Dorel AIORDĂCHIOAIE, "Dunărea de Jos" University of Galați, Romania Costin BĂDICĂ, University of Craiova, Romania Gildas BESANCON, Grenoble Institute of Technology, France Sašo BLAŽIC, University of Ljubljana, Slovenia Eugen BOBASU, University of Craiova, Romania Antoneta Iuliana BRATCU, Grenoble Institute of Technology, France Marius BREZOVAN, University of Craiova, Romania Keith J. BURNHAM, University of Wolverhampton, UK David CAMACHO, Autonomous University of Madrid, Spain Sergiu CARAMAN, "Dunărea de Jos" University of Galați, Romania Oscar CASTILLO, Tijuana Institute of Technology, Mexico Petru CAȘCAVAL, "Gheorghe Asachi" Technical University of Iași, Romania Arben CELA, Paris-Est University, ESIEE Paris, France Daniela CERNEGA, "Dunărea de Jos" University of Galați, Romania Dorian COJOCARU, University of Craiova, Romania Antonio DOURADO, University of Coimbra, Portugal Ioan DUMITRACHE, University Politehnica of Bucharest, Romania Luminita DUMITRIU, "Dunărea de Jos" University of Galați, Romania Stefka FIDANOVA, Bulgarian Academy of Sciences, Bulgaria Florin-Gheorghe FILIP, Romanian Academy, Romania Adrian FILIPESCU, "Dunărea de Jos" University of Galați, Romania Adina Magda FLOREA, University Politehnica of Bucharest, Romania Giancarlo FORTINO, University of Calabria, Italy Radu GROSU, Vienna University of Technology, Austria Martin GUAY, Queen's University, Canada Kevin GUELTON, Université de Reims Champagne-Ardenne, France Rodolfo HABER GUERRA, Center for Automation and Robotics (CSIC-UPM), Spain Adel HAGHANI, University of Rostock, Germany Jacob HAMMER, University of Florida, USA Zoltán HORVÁTH, Eötvös Loránd University, Hungary Zhongsheng HOU, Qingdao University, China Daniela IACOVIELLO, Sapienza University of Rome, Italy Przemyslaw IGNACIUK, Technical University of Lodz, Poland Mirjana IVANOVIĆ, University of Novi Sad, Serbia Zsolt Csaba JOHANYÁK, John von Neumann University, Hungary Alireza KARIMI, Swiss Federal Institute of Technology Lausanne, Switzerland Marius KLOETZER, "Gheorghe Asachi" Technical University of Iași, Romania Petia KOPRINKOVA-HRISTOVA, Bulgarian Academy of Sciences, Bulgaria Péter KORONDI, Budapest University of Technology and Economics, Hungary Levente KOVÁCS, Óbuda University, Budapest, Hungary Michal KVASNICA, Slovak University of Technology in Bratislava, Slovakia Hak-Keung LAM, King's College London, UK Ioan-Doré LANDAU, Grenoble Institute of Technology, France Corneliu LAZĂR, "Gheorghe Asachi" Technical University of Iași, Romania Mircea LAZÅR, Eindhoven University of Technology, Netherlands Yann LE GORREC, École Nationale Supérieure de Mécanique et des Microtechniques, France Jesús de LEÓN MORALES, Autonomous University of Nuevo León, Mexico Cristian MAHULEA, University of Zaragoza, Spain Mihaela MATCOVSCHI, "Gheorghe Asachi" Technical University of Iași, Romania Patricia MELIN, Tijuana Institute of Technology, Mexico Mihai MICEA, Politehnica University of Timisoara, Romania Liviu MICLEA, Technical University of Cluj-Napoca, Romania Sabine MONDIÉ, CINVESTAV-IPN, Mexico Ion NECOARA, University Politehnica of Bucharest, Romania Sergiu NEDEVSCHI, Technical University of Cluj-Napoca, Romania Sorin OLARU, Paris-Saclay University, France Hitay ÖZBAY, Bilkent University, Turkey Marcin PAPRZYCKI, Systems Research Institute, Polish Academy of Sciences, Poland Nicolae PARASCHIV, Petroleum-Gas University of Ploiești, Romania Lăcră PAVEL, University of Toronto, Canada

Tamara PETROVIĆ, University of Zagreb, Croatia Stefan Wolfgang PICKL, Bundeswehr University Munich, Germany Marios M. POLYCARPOU, University of Cyprus, Cyprus Dan POPESCU, University of Craiova, Romania Dumitru POPESCU, University Politehnica of Bucharest, Romania Elvira POPESCU, University of Craiova, Romania Vicenc PUIG, Polytechnic University of Catalonia, Spain Werner PURGATHOFER, Vienna University of Technology, Austria Xiaobo QU, Chalmers University of Technology, Sweden Antonio E. B. RUANO, University of Algarve, Portugal Sergio Matteo SAVARESI, Polytechnic University of Milan, Italy Olivier SENAME, Grenoble Institute of Technology, France Vasile SIMA, National Institute for Research & Development in Informatics, Romania Xiaona SONG, Henan University of Science and Technology, China James C. SPALL, Johns Hopkins University, USA Liana STĂNESCU, University of Craiova, Romania Dorin SENDRESCU, University of Craiova, Romania Michael ŠEBEK, Czech Technical University in Prague, Czech Republic Igor ŠKRJANC, University of Ljubljana, Slovenia Shigemasa TAKAI, Osaka University, Japan Sihem TEBBANI, Paris-Saclay University, France Gianluca TEMPESTI, University of York, UK Mariana TITICA, University of Nantes, France Alain VANDE WOUWER, University of Mons, Belgium Antonis VARDULAKIS, Aristotle University of Thessaloniki, Greece Honoriu VALEAN, Technical University of Cluj-Napoca, Romania Pastora VEGA, University of Salamanca, Spain Ramon VILANOVA, Autonomous University of Barcelona, Spain Alina VODĂ, Grenoble Institute of Technology, France Draguna VRABIE, Pacific Northwest National Laboratory, USA Damir VRANČIĆ, Jožef Stefan Institute, Slovenia Shen YIN, Harbin Institute of Technology, China

Executive Associate Editors

Lucian BÅRBULESCU, PhD University of Craiova, Faculty of Automation, Computers and Electronics, Str. A.I. Cuza 13, 200585, Craiova, Romania

Adrian BURLACU, PhD "Gheorghe Asachi" Technical University of Iasi, Faculty of Automatic Control and Computer Engineering Str. Prof. dr. doc. Dimitrie Mangeron, nr. 27, 700050, Iași, Romania

Marius MARIAN, PhD University of Craiova, Faculty of Automation, Computers and Electronics, Str. A.I. Cuza 13, 200585, Craiova, Romania

Raul-Cristian ROMAN, PhD Politehnica University of Timișoara, Department of Automation and Applied Informatics, Bd. Vasile Pârvan 2, 300223, Timișoara, Romania

Răzvan ȘOLEA, PhD "Dunărea de Jos" University of Galați, Faculty of Control Systems, Computers, Electrical and Electronics Engineering, Str. Științei 2, 800210, Galați, Romania

Sparse Filtering Under Norm-Bounded Exogenous Disturbances Using Observers

Mikhail V. Khlebnikov

Ya. Z. Tsypkin Laboratory of Adaptive and Robust Systems, V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (ICS RAS); Moscow Institute of Physics and Technology Moscow, Russia

Email: khlebnik@ipu.ru

Abstract—The paper considers the sparse filtering problem under arbitrary norm-bounded exogenous disturbances. We propose a simple and universal observer-based approach to its solution, based on the LMI technique and the method of invariant ellipsoids; it allows the use of a reduced number of system outputs. From a technical point of view of application, we reduce the original problem to semi-definite programming, which is easily solved numerically. The proposed simple approach is easy to implement and can be equally extended to systems in continuous and discrete time.

Index Terms-linear system, filtering, sparsity, exogenous disturbances, linear matrix inequalities, invariant ellipsoids

I. INTRODUCTION

In the modern literature, the term *sparse filtering* is mainly assigned to such areas as machine learning, pattern recognition, signal and image processing; see, for example, [1]-[5]. In many situations, the classical assumption that the disturbances are random is not justified. Frequently, it is known that the disturbances are bounded only. In this case, guaranteed estimates of states can be constructed. This approach was proposed in the works of Witzenhausen, Bertsekas and Rhodes, Schweppe [6]. At about the same time, similar problems were developed by such researchers as Kurzhansky [7]. A significant contribution to this circle of research was made by Chernousko [8].

In the papers [9], [10], the problem of filtering with nonrandom bounded exogenous disturbances was considered, but only for stationary problem statements. Moreover, a state estimate was sought such that its residual is guaranteed to be enclosed in a single so-called invariant ellipsoid. The filter was also sought as the linear stationary filter. In this class, the problem turned out to be completely solvable, so that it was possible to construct an optimal filter and state estimate. From a technical point of view, the LMI apparatus [11] was used in [9], [10]. The LMI technique has proven itself well in the analysis and design (see, e.g. [12], [13]), but has not been

This work was supported by the Russian Science Foundation, project no. 21-71-30005.

widely used in filtering problems. A systematic presentation of this technique is given in the monograph [14].

On the other hand, the sparsity ideas are widely used in the various fields (e.g., see [15], [16]), but not in control. We mention publications [17], [18] devoted to the sparse feedback design. In [19], a new approach to constructing a sparse feedback was proposed, which is associated with minimizing nonzero rows or nonzero columns of the matrix. Such matrices are called row-sparse and column-sparse, respectively.

This method is distinguished by simplicity: the initial problems are reduced to solving low-dimensional convex optimization problem, and for its numerical solution one can use standard tools, such as MATLAB-based package YALMIP [20] and CVX [21], [22]. We mention the versatility of the proposed approach as continuous- and discrete-time cases are considered uniformly, and it is applicable to both linear state and output feedback design. At last, we stress its extendability to the various robust formulations, as well as to the optimal control problems, etc.

This paper is a natural continuation of [9], [10], and [19]. It proposes an approach to the solution of the *sparse filtering* problem, that is, filtering using a reduced number of outputs in the presence of arbitrary bounded exogenous disturbances.

Throughout the following, $\|\cdot\|$ is the Euclidean norm of a vector and the spectral norm of a matrix, ^T is the transposition symbol, $\mathbb{S}^{n \times n}$ is the class of symmetric real $n \times n$ matrices, I is the identity matrix of appropriate dimension, and all matrix inequalities are understood in the sense of the sign definiteness of the matrices.

The present paper is the revised and expanded version of talk [23] presented at the IEEE 25th International Conference on System Theory, Control and Computing (ICSTCC 2021). In particular, a number of additions have been made to the text of the article, and the list of references has been significantly expanded and updated.

II. SPARSE CONTROL

Let us recall the main ideas of the above mentioned approach to the construction of sparse control. Let $\Omega \in \mathbb{R}^{n \times p}$; we introduce into consideration the following matrix norms:

$$\|\Omega\|_{r_1} = \sum_{i=1}^n \max_{1 \le j \le p} |\omega_{ij}|, \quad \|\Omega\|_{c_1} = \sum_{j=1}^p \max_{1 \le i \le n} |\omega_{ij}|.$$

The following result stated in [19]. *Theorem 1:* If the problem

$$\min \|\Omega\|_{r_1} \quad \text{s.t.} \quad A\Omega = B,$$

where $A \in \mathbb{R}^{m \times n}$, $m < n, B \in \mathbb{R}^{m \times p}$, $\Omega \in \mathbb{R}^{n \times p}$, is feasible, then there exists a solution with no more than m nonzero rows.

A similar result can be stated for the c_1 -norm.

The approach developed in [19] allows the regular design of sparse controls in various statements. In particular, consider the linear system in continuous time

$$\dot{x} = Ax + Bu \tag{1}$$

with state $x \in \mathbb{R}^n$ and control input $u \in \mathbb{R}^m$, i.e. $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$; the pair (A, B) is controllable.

The goal is to construct a sparse stabilizing control

$$u = \Phi x,$$

in the sense of zero components of the control vector. So, we are interesting in finding the *row-sparse* stabilizing controller $\Phi \in \mathbb{R}^{m \times n}$, i.e. having zero rows.

The technique required to obtain this result will be used in the sequel. It is well known, the matrix $A + B\Phi$ is stable iff there exists matrix $\Omega \succ 0$ such that

$$(A + B\Phi)^{\mathrm{T}}\Omega + \Omega(A + B\Phi) \prec 0.$$

Pre-multiplying and post-multiplying this inequality by the matrix $\Xi = \Omega^{-1}$ we obtain the inequality

$$A\Xi + \Xi A^{\mathrm{T}} + B\Phi\Xi + \Xi\Phi^{\mathrm{T}}B^{\mathrm{T}} \prec 0.$$

Finally, introducing a new matrix variable $\Psi = \Phi \Xi$, we obtain the LMI

$$A\Xi + \Xi A^{\mathrm{T}} + B\Psi + \Psi^{\mathrm{T}} B^{\mathrm{T}} \prec 0, \quad \Xi \succ 0, \tag{2}$$

in the matrix variables $\Xi \in \mathbb{S}^{n \times n}$ and $\Psi \in \mathbb{R}^{m \times n}$. Therefore, any stabilizing gain matrix for system (1) is presented by the expression

$$\widehat{\Phi} = \widehat{\Psi} \widehat{\Xi}^{-1}$$

where the matrices $\widehat{\Xi}$ and $\widehat{\Psi}$ satisfy (2).

It is clear, right multiplication preserves the row-sparse structure of the matrix. Therefore, if the solution $\widehat{\Psi}$ of the linear matrix inequality (2) is row-sparse, then the gain matrix $\widehat{\Phi}$ is row-sparse. Hence, the row sparsity of the matrix Ψ can be achieved by minimizing its r_1 -norm. Thus, the following statement holds.

Statement 1 ([19]): The solution $\widehat{\Xi}$ and $\widehat{\Psi}$ of the convex optimization problem

$$\min \|\Psi\|_{r_1} \quad \text{s.t.} \quad A\Xi + \Xi A^{\mathrm{T}} + B\Psi + \Psi^{\mathrm{T}} B^{\mathrm{T}} \prec 0, \quad \Xi \succ 0,$$

in the matrix variables $\Xi \in \mathbb{S}^{n \times n}$ and $\Psi \in \mathbb{R}^{m \times n}$, defines the row-sparse stabilizing gain matrix

$$\Phi_{\rm sp}=\widehat{\Psi}\widehat{\Xi}^{-1}$$

for system (1).

With Statement 1, we detect the stabilizing control inputs. These controls are determined by nonzero rows of the matrix Φ_{sp} . Evidently, we can not state that the resulting solution will be row-sparse, but it is expected by virtue of Theorem 1.

The author apply these ideas to the sparse filtering problem stated in the next section.

III. CONTINUOUS-TIME CASE

A. Filtering problem

Consider the dynamical system

$$\dot{x} = Ax + B\nu, \quad x(0) = x_0,$$

$$u = Cx + D\nu.$$
(3)

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $D \in \mathbb{R}^{l \times m}$, $C \in \mathbb{R}^{l \times n}$, with state $x(t) \in \mathbb{R}^n$, observed output $y(t) \in \mathbb{R}^l$, and exogenous disturbances $\nu(t) \in \mathbb{R}^m$ satisfying the constraint

$$\|\nu(t)\| \le 1 \quad \text{for all } t \ge 0; \tag{4}$$

the pair (A, B) is controllable and the pair (A, C) is observable. Let the state x of system (3) be unavailable, and the information about the system is provided by its output y.

We construct a linear filter described by the differential equation

$$\dot{\widehat{x}} = A\widehat{x} + \mathcal{F}(y - C\widehat{x}), \quad \widehat{x}(0) = 0.$$

We emphasize that only the constant matrix $\mathcal{F} \in \mathbb{R}^{n \times l}$ is to be chosen.

The goal is to find the minimal (in the certain sense) invariant ellipsoid containing the residual

$$\rho(t) = x(t) - \hat{x}(t).$$

The application of the ideology of invariant ellipsoids to control systems is described in [11], [14] in detail. Recall that the ellipsoid

$$\mathcal{V}_x = \{ x \in \mathbb{R}^n : \quad x^{\mathrm{T}} \Xi^{-1} x \le 1 \}, \quad \Xi \succ 0,$$

is called invariant for a dynamical system if the condition $x(0) \in \mathcal{V}_x$ yields $x(t) \in \mathcal{V}_x$ for all times $t \ge 0$. So, any trajectory of the system, starting from any point lying inside the ellipsoid \mathcal{V}_x , at any time instant will be in this ellipsoid for all admissible exogenous disturbances.

By virtue of the attractiveness property of an invariant ellipsoid, the filtering accuracy is asymptotic for large deviations, and the filtering accuracy is uniform in t for small deviations.

There are many invariant ellipsoids, the goal is to find the minimum one and, to minimize it over \mathcal{F} . It is convenient for us to assume that the *minimal* ellipsoid has the minimal trace of its matrix. In [9], the following result was stated.

Theorem 2: Let $\widehat{\Omega}$ and $\widehat{\Psi}$ be the solution of the optimization problem

$$\min \operatorname{tr} \Upsilon$$

under the constraints

$$\begin{pmatrix} A^{\mathrm{T}}\Omega + \Omega A - \Psi C - C^{\mathrm{T}}\Psi^{\mathrm{T}} + \mu\Omega & \Omega B - \Psi D \\ B_{1}^{\mathrm{T}}\Omega - B_{2}^{\mathrm{T}}\Psi^{\mathrm{T}} & -\mu I \end{pmatrix} \preceq 0, \\ \begin{pmatrix} \Upsilon & I \\ I & \Omega \end{pmatrix} \succeq 0, \quad \Omega \succ 0,$$

with the matrix variables $\Omega \in \mathbb{S}^{n \times n}$, $\Psi \in \mathbb{R}^{n \times l}$, $\Upsilon \in \mathbb{S}^{n \times n}$, and the scalar parameter $\mu > 0$.

Then the optimal filter matrix gives as

$$\widehat{\mathcal{F}} = \widehat{\Omega}^{-1}\widehat{\Psi},$$

and minimal invariant ellipsoid for the residual of (3) with $x_0 = 0$ defined by the matrix

$$\widehat{\Xi} = \widehat{\Omega}^{-1}.$$

B. Sparse filtering

We will seek a sparse solution of the filtering problem for system (3), (4). Note, that the filter matrix \mathcal{F} has the form

$$\mathcal{F} = \Omega^{-1} \Psi.$$

Therefore, if the matrix Ψ be column-sparse, then the corresponding filter matrix \mathcal{F} be column-sparse as well. In turn, the column sparsity of the matrix Ψ can be achieved by minimizing its c_1 -norm.

Thus, we have the following algorithm, which involves the execution of three consecutive steps.

Algorithm 1:

Step 1. Solving the optimization problem

$$\min \operatorname{tr} \Upsilon \tag{5}$$

under the constraints

$$\begin{pmatrix} A^{\mathrm{T}}\Omega + \Omega A - \Psi C - C^{\mathrm{T}}\Psi^{\mathrm{T}} + \mu\Omega & \Omega B - \Psi D \\ B_{1}^{\mathrm{T}}\Omega - B_{2}^{\mathrm{T}}\Psi^{\mathrm{T}} & -\mu I \end{pmatrix} \preceq 0,$$

$$\begin{pmatrix} \Upsilon & I \\ I & \Omega \end{pmatrix} \succeq 0, \quad \Omega \succ 0,$$
(6)

in the matrix variables $\Omega \in \mathbb{S}^{n \times n}$, $\Psi \in \mathbb{R}^{n \times l}$, $\Upsilon \in \mathbb{S}^{n \times n}$, and the scalar parameter $\mu > 0$, we obtain the values Ω^* , Ψ^* , and Υ^* which define the matrix

$$\mathcal{F}^* = (\Omega^*)^{-1} \Psi^*$$

of the optimal filter, and the matrix

$$\Xi^* = (\Omega^*)^{-1}$$

of the minimal invariant ellipsoid for the residual, and the corresponding value

$$\mathcal{J}^* = \operatorname{tr} \Upsilon^*$$

of the cost function.

Step 2. Having the value \mathcal{J}^* , we implement the relaxation coefficient $\lambda > 1$ and consider c_1 -optimization problem

$$\min \|\Psi\|_{c_1} \quad \text{s.t. (6), (7) and } \operatorname{tr} \Upsilon \preceq \lambda \mathcal{J}^* \tag{8}$$

in the matrix variables $\Omega \in \mathbb{S}^{n \times n}$, $\Psi \in \mathbb{R}^{n \times l}$, $\Upsilon \in \mathbb{S}^{n \times n}$, and the scalar parameter $\mu > 0$.

By virtue of the properties of the c_1 -norm, one can expect the occurrence of zero columns in the solution $\widehat{\Psi}_0$ of this problem.

Step 3. We resolve the problem (5)–(7) with the additional constraint that the matrix variable Ψ has zero columns at the same places as the matrix $\widehat{\Psi}_0$. Its solution $\widehat{\Omega}$, $\widehat{\Psi}$ defines the column-sparse filter matrix

$$\widehat{\mathcal{F}} = \widehat{\Omega}^{-1}\widehat{\Psi}$$

and the matrix $\widehat{\Xi} = \widehat{\Omega}^{-1}$ of the corresponding invariant ellipsoid for the residual.

In section V, it will be shown by example that the proposed procedure leads to highly sparse matrices of the filter with small losses in terms of the cost criterion.

Remark 1: If we have a priori information about the initial condition $x(0) \in \mathcal{V}_0$ of the system, where

$$\mathcal{V}_0 = \{ x \in \mathbb{R}^n \colon x^{\mathrm{T}} \Xi_0^{-1} x \le 1 \}.$$

Then, letting $\hat{x}(0) = 0$, we can guarantee that $\rho(0) \in \mathcal{V}_0$. If we prescribe that

$$\mathcal{V}_0\subset\mathcal{V}$$

then we can guarantee that $\rho(t) \in \mathcal{V}$ for all $t \ge 0$. Accordingly, if we add the condition

 $\Omega \prec \Xi_0^{-1}$

to the constraints (6)–(7) in Algorithm 1, then we obtain not only asymptotic, but uniform estimate of the sparse filtering accuracy.

Remark 2: Often it is necessary to evaluate the quality of filtering not all coordinates of the state x, but only some of coordinates. Let us have the output

$$z = C_z x$$

and the goal is to make the residual of its estimate

$$\rho_z = z - \hat{z} = C_z (x - \hat{x})$$

as small as possible. The solution of this problem is achieved by replacing the first of the conditions (7) by

$$\begin{pmatrix} \Upsilon & C_z \\ C_z^{\mathrm{T}} & \Omega \end{pmatrix} \succeq 0.$$

IV. DISCRETE-TIME CASE

The analogous results can be established for the dynamical system

$$\begin{aligned} x_{k+1} &= Ax_k + B\nu_k, \\ y_k &= Cx_k + D\nu_k, \end{aligned} \tag{9}$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $D \in \mathbb{R}^{l \times m}$, $C \in \mathbb{R}^{l \times n}$, with initial condition x_0 , state $x_k \in \mathbb{R}^n$, observed output $y_k \in \mathbb{R}^l$, and exogenous disturbance $\nu_k \in \mathbb{R}^m$, satisfying the constraint

$$\|\nu_k\| \le 1$$
 for all $k = 0, 1, 2, \dots$ (10)

Let the pair (A, B) is controllable and the pair (A, C) is observable.

We construct a filter described by the difference equation

$$\widehat{x}_{k+1} = A\widehat{x}_k + \mathcal{F}(y_k - C\widehat{x}_k), \quad \widehat{x}_0 = 0,$$

for the state estimate \hat{x}_k with a fixed matrix $\mathcal{F} \in \mathbb{R}^{n \times l}$. Introduce the residual

$$\rho_k = x_k - \hat{x}_k.$$

The problem is to find the matrix \mathcal{F} that ensures the minimality of the invariant ellipsoid \mathcal{V} containing the residual ρ_k .

The following theorem holds.

Theorem 3 ([14]): Let $\widehat{\Omega}$ and $\widehat{\Psi}$ be the solution of the optimization problem

$$\min \operatorname{tr} \Upsilon$$

under the constraints

$$\begin{pmatrix} -\mu\Omega & (\Omega A - \Psi C)^{\mathrm{T}} & 0\\ \Omega A - \Psi C & -\Omega & \Omega B - \Psi D\\ 0 & (\Omega B - \Psi D)^{\mathrm{T}} & -(1 - \mu)I \end{pmatrix} \preceq 0 \\ \begin{pmatrix} \Upsilon & I\\ I & \Omega \end{pmatrix} \succeq 0, \quad \Omega \succ 0,$$

in the matrix variables $\Omega \in \mathbb{S}^{n \times n}$, $\Psi \in \mathbb{R}^{n \times l}$, $\Upsilon \in \mathbb{S}^{n \times n}$, and the scalar parameter $0 < \mu < 1$.

Then the optimal filter matrix is given by the expression

$$\widehat{\mathcal{F}} = \widehat{\Omega}^{-1}\widehat{\Psi},$$

and the matrix of the minimal invariant ellipsoid for the residual ρ_k for system (9) with $x_0 = 0$ is given by the expression

 $\widehat{\Xi} = \widehat{\Omega}^{-1}.$

The search procedure for a sparse solution of the filtering problem for system (9), (10) also involves performing three consecutive steps.

Algorithm 2:

Step 1. We solve the optimization problem

$$\min \operatorname{tr} \Upsilon \tag{11}$$

under the constraints

$$\begin{pmatrix} -\mu\Omega & (\Omega A - \Psi C)^{\mathrm{T}} & 0\\ \Omega A - \Psi C & -\Omega & \Omega B - \Psi D\\ 0 & (\Omega B - \Psi D)^{\mathrm{T}} & -(1-\mu)I \end{pmatrix} \preceq 0, \quad (12)$$

$$\begin{pmatrix} \Upsilon & I \\ I & \Omega \end{pmatrix} \succeq 0, \quad \Omega \succ 0, \tag{13}$$

with the matrix variables $\Omega \in \mathbb{S}^{n \times n}$, $\Psi \in \mathbb{R}^{n \times l}$, $\Upsilon \in \mathbb{S}^{n \times n}$, and the scalar parameter $\mu > 0$.

The values Ω^* , Ψ^* , and Υ^* define the matrix

$$\mathcal{F}^* = (\Omega^*)^{-1} \Psi^*$$

of the optimal filter, the matrix

$$\Xi^* = (\Omega^*)^{-1}$$

of the minimal invariant ellipsoid for the residual, and the optimal value

$$\mathcal{J}^* = \operatorname{tr} \Upsilon^*$$

of the cost function.

Step 2. Having the value \mathcal{J}^* , we implement the relaxation coefficient $\lambda > 1$ and solve the optimization problem

$$\min \|\Psi\|_{c_1}$$
 s.t. (12), (13), and $\operatorname{tr} \Upsilon \preceq \lambda \mathcal{J}^*$

in the matrix variables $\Omega \in \mathbb{S}^{n \times n}$, $\Psi \in \mathbb{R}^{n \times l}$, $\Upsilon \in \mathbb{S}^{n \times n}$, and the scalar parameter $0 < \mu < 1$. Due to the properties of the c_1 -norm, one can expect the appearance of zero columns in its solution $\widehat{\Psi}_0$.

Step 3. We resolve the original problem (11)–(13) where the same arrangement of zero rows is fixed in the matrix variable Ψ as in the column-sparse matrix $\widehat{\Psi}_0$. Its solution $\widehat{\Omega}$, $\widehat{\Psi}$ defines the column-sparse filter matrix

$$\widehat{\mathcal{F}} = \widehat{\Omega}^{-1}\widehat{\Psi}$$

 $\widehat{\Xi} = \widehat{\Omega}^{-1}$

and the matrix

of the corresponding invariant ellipsoid for the residual.

Remarks 1 and 2 remain valid in the discrete-time statements.

As the results of numerical simulations show, the "payment" for using a reduced number of controls/outputs (i.e., a loss in terms of cost function) is usually very small.

V. EXAMPLE

Consider the HE3 problem borrowed from COMPleib [24] benchmark library. This library contains various problems having a clear engineering origin and using to test the efficacy of the proposed approaches. The considered linearized system describes the dynamics of the Bell201A-1 helicopter.

The matrices of the considered system have the following form:

	(-0.0046)	0.038	0.3259	-0.0045	-0.402	-0.073	-9.81	0 \	
A =	-0.1978	-0.5667	0.357	-0.0378	-0.2149	0.5683	0	0	
	0.0039	-0.0029	-0.2947	0.007	0.2266	0.0148	0	0	
	0.0133	-0.0014	-0.4076	-0.0654	-0.4093	0.2674	0	9.81	
	0.0127	-0.01	-0.8152	-0.0397	-0.821	0.1442	0	0	
	-0.0285	-0.0232	0.1064	0.0709	-0.2786	-0.7396	0	0	
	0	0	1	0	0	0	0	0	
	0	0	0	0	1	0	0	0/	

Here the state vector is given as

$$x = \begin{pmatrix} u_H & \sigma & h & v & p & r & \theta & \varphi \end{pmatrix}^{\mathrm{T}},$$

where u_H is the forward velocity, h is the pitch rate, σ is the vertical velocity, p is the roll rate, v is the lateral velocity, r is the yaw rate, φ is the roll angle, θ is the pitch angle, and the output vector is

$$y = \begin{pmatrix} \sigma & \theta & \varphi & r & h & p \end{pmatrix}^{\mathrm{T}}.$$

Setting $\Xi_0 = 0.1I$ and using Theorem 2, at the first step of Algorithm 1 we obtain the optimal filter matrix \mathcal{F}^* and

the corresponding invariant ellipsoid for the residual with matrix Ξ^\ast such that

$$\operatorname{tr} \Xi^* = 1.1381.$$

At the second step, solving the c_1 -optimization problem (8) for $\lambda = 10$, we obtain the matrix $\widehat{\Psi}_0$ with two last columns of the order of 10^{-10} .

At the third step, fixing these rows as zero and resolving the original problem, we obtain the column-sparse filter matrix $\widehat{\mathcal{F}}$ and the invariant ellipsoid $\widehat{\Xi}$ for the residual with

$$\operatorname{tr}\widehat{\Xi} = 1.2131$$

	$\mathcal{F}^* =$	$\begin{pmatrix} -3.37\\ 1.239\\ 0.853\\ -0.042\\ -0.362\\ 0.289\\ 6.828\\ 0.007 \end{pmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	76 630 243 943 393 13 06 00	$\begin{array}{c} -0.6771 \\ 0.2334 \\ -0.1172 \\ -0.4499 \\ -0.5462 \\ -0.0226 \\ 0.0687 \\ -0.0000 \end{array}$	
$\Xi^* =$	$\begin{pmatrix} 0.3714\\ -0.1278\\ -0.0139\\ 0.0007\\ 0.0036\\ 0.0124\\ -0.0377\\ 0.0000 \end{pmatrix}$	-0.12 0.160 0.006 -0.00 -0.00 0.017 -0.00	$\begin{array}{rrrrr} 78 & -0.013 \\ 02 & 0.006 \\ 05 & 0.100 \\ 03 & -0.000 \\ 17 & -0.000 \\ 58 & -0.000 \\ 7 & 0.001 \\ 00 & -0.000 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 7 & 0.003 \\ 03 & -0.00 \\ 00 & -0.00 \\ 0 & 0.000 \\ 0 & 0.100 \\ 0 & 0.000 \\ 01 & -0.00 \\ 00 & 0.000 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24)58)06)0)2)6)17)0	$\begin{array}{c} -0.0377\\ 0.0177\\ 0.0019\\ -0.0001\\ -0.0005\\ -0.0017\\ 0.1052\\ -0.0000\end{array}$	$\begin{array}{c} 0.0000\\ -0.0000\\ -0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ -0.0000\\ 0.1000 \end{array} \right)$
		$\widehat{\Psi}_0 =$	$\begin{pmatrix} -0.4093\\ 0.4093\\ 0.4093\\ 0.0724\\ -0.4093\\ -0.4093\\ -0.2441\\ -0.0143 \end{pmatrix}$	$\begin{array}{r} -2.0441 \\ -2.0441 \\ 2.0441 \\ -0.3055 \\ -0.3780 \\ 2.0441 \\ 2.0441 \\ -0.4028 \end{array}$	$\begin{array}{c} 0.1151 \\ -0.2968 \\ -1.0477 \\ 1.9967 \\ 1.9967 \\ 1.1985 \\ 1.9967 \\ 1.9967 \\ 1.9967 \end{array}$	$\begin{array}{c} -0.1159\\ -0.2514\\ -0.0129\\ 0.2514\\ -0.2514\\ 0.2514\\ 0.2514\\ 0.0245\end{array}$	0 0 0 0 0 0 0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
		$\widehat{\mathcal{F}} =$	-1.4878 0.7782 0.7283 -0.8973 -0.8263 0.3308 8.0516 0.1116	$\begin{array}{c} 0.6754 \\ -11.1508 \\ 0.0624 \\ -0.1698 \\ -0.1289 \\ 1.3900 \\ -0.0006 \\ 0.0000 \end{array}$	$\begin{array}{c} 0.0519 \\ -0.3270 \\ -0.0159 \\ 9.9423 \\ 1.0840 \\ 0.0164 \\ -0.5781 \\ 0.3123 \end{array}$	$\begin{array}{c} 0.5895 \\ -0.2482 \\ 0.0733 \\ 0.4216 \\ -0.0998 \\ -0.4074 \\ -0.9786 \\ -0.0170 \end{array}$	0 0 0 0 0 0 0 0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	

[1]} 	$\begin{pmatrix} 0.4183 \\ -0.1314 \\ 0.0026 \\ -0.0146 \\ -0.0251 \\ 0.0179 \\ -0.0083 \end{pmatrix}$	$\begin{array}{c} -0.1314\\ 0.1571\\ 0.0013\\ 0.0007\\ 0.0069\\ -0.0076\\ 0.0104\end{array}$	$\begin{array}{c} 0.0026\\ 0.0013\\ 0.1019\\ -0.0044\\ -0.0030\\ -0.0000\\ 0.0055 \end{array}$	$\begin{array}{c} -0.0146\\ 0.0007\\ -0.0044\\ 0.1105\\ 0.0076\\ -0.0004\\ -0.0125\end{array}$	$\begin{array}{c} -0.0251\\ 0.0069\\ -0.0030\\ 0.0076\\ 0.1062\\ -0.0011\\ -0.0077\end{array}$	$\begin{array}{c} 0.0179 \\ -0.0076 \\ -0.0000 \\ -0.0004 \\ -0.0011 \\ 0.1010 \\ -0.0010 \end{array}$	$\begin{array}{c} -0.0083\\ 0.0104\\ 0.0055\\ -0.0125\\ -0.0077\\ -0.0010\\ 0.1170\end{array}$	$\begin{array}{c} -0.0147\\ 0.0050\\ -0.0010\\ 0.0026\\ 0.0024\\ -0.0007\\ -0.0022\end{array}$
	-0.0083 -0.0147	$0.0104 \\ 0.0050$	$\begin{array}{c} 0.0055 \\ -0.0010 \end{array}$	$-0.0125 \\ 0.0026$	-0.0077 0.0024	$-0.0010 \\ -0.0007$	$\begin{array}{c} 0.1170 \\ -0.0022 \end{array}$	-0.0022 0.1011
	\ · · · · · ·							/

Fig. 1. Filtering the coordinate x_1 .

Thus, we construct the sparse filter not using the outputs $y_5 = h$ (pitch rate) and $y_6 = p$ (roll rate), wherein the loss by the cost criterion is 6.5% only.

In the Fig. 1, the solid line depicts the trajectory $x_1(t) = u_H$ (forward velocity) of the system for some admissible exogenous disturbance, the dashed line depicts its optimal estimate $\hat{x}_1(t)$, and the red dotted line depicts the result $\tilde{x}_1(t)$ of using the proposed sparse filtering procedure.

For the coordinate $x_4 = v$ (lateral velocity), the sparse filtering accuracy is even higher, see Fig. 2.

The quality of filtering by other coordinates is also quite high.

From a computational point of view, the computations according to Algorithm 1 do not present any technical difficulties. At all its steps, we are dealing with convex optimization problems, for which the MATLAB-based CVX package mentioned in the introduction can be effectively used.

VI. CONCLUSION

We propose an approach to the sparse filtering problem under nonrandom bounded exogenous disturbances using an observer. The approach is based on the LMI technique and the method of invariant ellipsoids. Using of this concept made it possible to reduce the original problem to a semidefinite

Fig. 2. Filtering the coordinate x_4 .

programming that can be easily solved numerically. The approach is simple and easily implementable; it equally covers both continuous- and discrete-time cases.

In the future, the author plans to expand the results obtained to the various robust formulations of the problem, in particular, to the system

$$\dot{x} = (A + F\Delta H)x + B\nu$$

subjected to norm-bounded matrix uncertainty $\Delta \in \mathbb{R}^{p \times q}$, $\|\Delta\| \leq 1$, where F, H are given matrices of the appropriate dimensions.

ACKNOWLEDGMENT

The author is grateful to the referees for useful comments and recommendations.

REFERENCES

- A. Y. Carmi, L. Mihaylova, and S. J. Godsill (Eds.), Compressed Sensing & Sparse Filtering. Berlin: Springer, 2014.
- [2] F. M. Zennaro and K. Chen, "Towards understanding sparse filtering: A theoretical perspective," Neural Networks, vol. 98, pp. 154–177, 2018.
- [3] S. Yang, M. Wang, Z. Feng, Z. Liu, and R. Li, "Deep sparse tensor filtering network for synthetic aperture radar images classification," IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 8, pp. 3919–3924, 2018.

- [4] Z. Zhang, S. Li, J. Wang, Y. Xin, and Z. An, "General normalized sparse filtering: A novel unsupervised learning method for rotating machinery fault diagnosis," Mechanical Systems and Signal Processing, vol. 124, pp. 596–612, 2019.
- [5] C. Han, Y. Lei, Y. Xie, D. Zhou, and M. Gong, "Visual domain adaptation based on modified *A*-distance and sparse filtering," Pattern Recognition, vol. 104, art. 107254, 2020.
- [6] F. C. Schweppe, Uncertain Dynamic Systems. NJ: Prentice Hall, 1973.
- [7] A. B. Kurzhanskii, Control and Observation under Uncertainty. Moscow: Nauka, 1977. [in Russian]
- [8] F. L. Chernousko, State Estimation for Dynamic Systems. Moscow: Nauka, 1988. [in Russian]
- [9] B. T. Polyak and M. V. Topunov, "Filtering under nonrandom disturbances: The method of invariant ellipsoids," Doklady Mathematics, vol. 77, no. 1, pp. 158–162, 2008.
- [10] M. V. Khlebnikov, "Robust filtering under nonrandom disturbances: The invariant ellipsoid approach," Automation and Remote Control, vol. 70, no. 1, pp. 133–146, 2009.
- [11] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
- [12] K. O. Zheleznov, M. V. Khlebnikov, "Tracking problem for dynamical systems with exogenous and system disturbances," Proc. 20th International Conference on System Theory, Control and Computing (ICSTCC 2016). Sinaia, Romania, October 13–15, 2016, pp. 125–128.
- [13] M. V. Khlebnikov, K. O. Zheleznov, "Feedback design for linear control systems with exogenous and system disturbances: robust statement," Proc. 21st International Conference on System Theory, Control and Computing (ICSTCC 2017). Sinaia, Romania, October 19–21, 2017, pp. 716–721.
- [14] B. T. Polyak, M. V. Khlebnikov, and P. S. Shcherbakov, Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequality Technique. Moscow: LENAND, 2014. [in Russian]

- [15] D. L. Donoho, "Compressed sensing," IEEE Transactions on Information Theory, vol. 52, pp. 1289–1306, 2006.
- [16] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, "*ℓ*₁-Trend filtering," SIAM Review, vol. 51, no. 2, pp. 339–360, 2009.
- [17] F. Lin, M. Fardad, and M. Jovanović, "Sparse feedback synthesis via the alternating direction method of multipliers," Proc. 2012 Amer. Control Conf., Montreal, Canada, June 27–29, 2012, pp. 4765–4770.
- [18] F. Lin, M. Fardad, and M. Jovanović, "Augmented lagrangian approach to design of structured optimal state feedback gains," IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 2923–2929, 2011.
- [19] B. T. Polyak, M. V. Khlebnikov, and P. S. Shcherbakov, "An LMI approach to structured sparse feedback design in linear control systems," Proc. 12th European Control Conference (ECC'13), Zürich, Switzerland, July 17–19, 2013, pp. 833–838.
- [20] J. Löfberg, YALMIP: Software for Solving Sonvex (and Nonconvex) Optimization Problems. URL http://control.ee.ethz.ch/~joloef/wiki/ pmwiki.php
- [21] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.0 beta. URL http://cvxr.com/cvx
- [22] M. Grant and S. Boyd, "Graph implementations for nonsmooth convex programs," Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, editors. Springer, 2008. pp. 95–110.
- [23] M. V. Khlebnikov, "Sparse filtering under non-random bounded exogenous disturbances," Proc. 25th International Conference on System Theory, Control and Computing (ICSTCC 2021), Iaşi, Romania, October 20–23, 2021, pp. 200–205.
- [24] F. Leibfritz and W. Lipinski, Description of the Benchmark Examples in COMPleib 1.0. Technical report. University of Trier, 2003, URL www. complib.de

Global Position Feedback Tracking Control of a Serial Robot Manipulator with Revolute Joints

Azizbeck Akhmatov Dept. of Methods of Teaching Mathematics Navoi State Pedagogical Institute Navoi, Uzbekistan aaakhmatov@mail.ru

> Jumanazar Khusanov JizPI Jizzakh Polytechnic Institute Jizzax, Uzbekistan ORCID 0000-0001-9444-9324

Jamshid Buranov Academic lyceum Tashkent State Technical University named after I.Karimov Tashkent, Uzbekistan ORCID 0000-0002-4366-4021

> Olga Peregudova UISTU Ulyanovsk State Technical University Ulyanovsk, Russia ORCID 0000-0003-2701-9054

Abstract—In this paper, we present the controller which globally stabilizes a non-stationary motion of a serial robot manipulator with revolute joints without velocity measurements. A family of desired manipulator motions is considered such that the first vertical link of the manipulator performs a given rotation, and the remaining links retain the given relative angular positions. It is proved that such motions of the manipulator can be made globally asymptotically stable using dynamic position feedback. The problem is solved taking into account the periodicity of the dynamics equations along the angular coordinates of the links. As an example, a numerical simulation of the three-link manipulator motion under the constructed controller is presented.

Index Terms—stabilization control problem, serial robot manipulator, revolute joint, dynamic position feedback, Lyapunov function, cylindrical phase space

I. INTRODUCTION

In control theory, trajectory tracking is a fundamental problem. Trajectory tracking of a multi-link robot manipulators is considered as challenging control problem due to nonlinearity and non-stationarity of the dynamics equations. The main approach to the solution of the trajectory tracking control problem for a serial robot manipulator is the construction of proportional derivative (PD) controller with feedforward [1], [2]. Note that the use of a PD controller requires the position and velocity measurements of the manipulator links. In practice, the use of tachometers is fraught with difficulties. This is, firstly, the noise of the signals of the measured speeds, and secondly, the installation of tachometers makes the robot heavier and increases its cost. In addition, in some practically important tasks, for example the installation of tachometers is impossible when the robot operates in an aggressive environment, in a hot cell, etc.

The majority of work for control design of robotic manipulators without velocity measurements uses the dynamic filters, see [2]–[5]. For results related to the use of velocity observers see [6], [7] and for nonlinear proportional integral controllers and Volterra integro-differential equations see [8]–[12]. Due to the complexity of the problem, results on the global trajectory tracking of robot manipulators without velocity measurements are scarce. Note that the problem on global output trajectory tracking control of Euler-Lagrange systems has been solved in [3] based on Lyapunov function method.

Motivated by the authors' early works for the trajectory tracking control problem of multi-link robot manipulators [13], [14], in this paper, we give the solution to the global trajectory tracking control problem without velocity measurements for the revolute joined robotic arms with a vertical first link. The key contributions of our paper can be written as follows:

1) We use the periodicity property of the robotic manipulators equipped with revolute joints. Due to this property, we construct the dynamic position feedback controller which is bounded in position term and ensures the global attractivity of the reference trajectory in a cylindrical phase space.

2) We ensure the global tracking of reference trajectories such that the first link rotation angle is unbounded and twice continuously differentiable function with both derivatives bounded, and other link rotation angles are constant.

Throughout this paper, the following notation is used. Symbol $|\cdot|$ indicates the vector norm in \mathbb{R}^n . Symbol $||\cdot||$ denotes the operator matrix norm corresponding to the vector norm $|\cdot|$. $\lambda_{min}(\cdot)$ and $\lambda_{max}(\cdot)$ denote the smallest and largest eigenvalues of some matrix respectively. Symbol \mathcal{K} denotes the Hanh functions class.

The paper is organized as follows. In Section II we present the mathematical model of a robotic arm and define the problem setting. Our main result is stated in Section III. Example of a motion control for a three-link robot manipulator that illustrates our main results is presented in Section IV. Conclusions are provided in Section V.

Cite as: A. Akhmatov, J. Buranov, J. Khusanov, and O. Peregudova, "Global Position Feedback Tracking Control of a Serial Robot Manipulator with Revolute Joints", *Syst. Theor. Control Comput. J.*, vol. 2, no. 1, pp. 8–12, Jun. 2022. DOI: 10.52846/stccj.2022.2.1.30