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Some New Integral Inequalities for Exponential Type
P-functions

MAHIR KADAKAL, IMDAT ISCAN, AND HURIYE KADAKAL

ABSTRACT. In this paper, by using an identity we obtain some new Hermite-Hadamard type
inequalities for functions whose first derivative in absolute value is exponential type P-function
by using Holder and power-mean integral inequalities. Then, the authors compare the results
obtained with both Holder, Hélder-igcan integral inequalities and prove that the Hélder-i§can
integral inequality gives a better approximation than the Holder integral inequality. Also,
some applications to special means of real numbers are also given.

2010 Mathematics Subject Classtfication. Primary 26A51; Secondary 26D10, 26D15.
Key words and phrases. Exponential type convexity, exponential type P-function,
Hermite-Hadamard inequality.

1. Preliminaries and fundamentals

Let ¥ : I — R be a convex function. Then the following inequalities hold

q’(r;s) = Slr/rs‘l’(u)dug‘l’(r);‘w

for all r, s € I with r < s. Both inequalities hold in the reversed direction if the func-
tion W is concave. This double inequality is well known as the Hermite-Hadamard
inequality [6]. Note that some of the classical inequalities for means can be derived
from Hermite-Hadamard integral integral inequalities for appropriate particular se-
lections of the mapping W.

In [5], Dragomir et al. gave the following definition and related Hermite-Hadamard
integral inequalities as follow:

Definition 1.1. A nonnegative function ¥ : I CR — R is said to be P-function if
the inequality

UOr+(1—0)s) <W(r)+7(s)
holds for all r;s € I and 0 € (0,1).

Theorem 1.1. Let U € P(I), r,s € I withr <s and ¥ € L[r,s]. Then

q:(’”;s) <2 /:\Il(u)du§2[\11(r)+\lf(s)].

s§—T
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Definition 1.2 ([17]). Let h: J — R be a non-negative function, h # 0. We say that
¥ : I — R is an h-convex function, or that ¥ belongs to the class SX (h,I), if ¥ is
non-negative and for all u,v € I, § € (0,1) we have

U (Or + (1—0)s) < h(0)T (r) + h(1 — 0)T (s).

If this inequality is reversed, then W is said to be h-concave, i.e. ¥ € SV (h,I). It
is clear that, if we choose h(8) = 0 and h(f) = 1, then the h-convexity reduces to
convexity and definition of P-function, respectively.

Readers can look at [1, 17] for studies on h-convexity.
In [13], Kadakal and Iscan gave the following definition and related Hermite-
Hadamard integral inequalities as follow:

Definition 1.3. A non-negative function ¥ : I C R — R is called exponential type
convex function if for every r,s € I and 6 € [0, 1],

T(Or+(1—-0)s) < (? —1)U(r) + (77 — 1) T(s).

We note that every nonnegative convex function is exponential type convex func-
tion.

Theorem 1.2 ([13]). Let ¥ : [r,s] — R be a exponential type convex function. If
r<sand ¥ € L{r,s|, then the following Hermite-Hadamard type inequalities hold:

1 r+s 1 s
2{\/@_1]@( : ) <- T/T W(u)du < (e — 2) [¥ (r) + U (s)].

In recent years many authors have studied error estimations of Hermite-Hadamard
type inequalities; for refinements, counterparts, generalizations, for some related pa-
pers see [2, 3, 4, 5,9, 10, 11, 12, 13, 14, 16].

In [15], Numan and i§can gave the following definition and Hermite-Hadamard
integral inequality:

Definition 1.4 ([15]). A non-negative function ¥ : I C R — R is called exponential
type P-function if for every r,s € I and 6 € [0, 1],

U (Or+(1—-0)s) < (e +e' 7% —2) [T(r) + U(s)].

We will denote by ET P (I) the class of all exponential type P-functions on interval
I. We note that, every exponential type P-function is a h-convex function with the
function h() = e? + e'=? — 2. Also, every exponential type convex function is also a
exponential type P-function, every P-function is also a exponential type P-function
and every nonnegative convex function is also an exponential type P-function.

Theorem 1.3. Let ¥ : [r;s] — R be a exponential type P-function. If r < s and
U € L|r,s|, then the following Hermite-Hadamard type inequalities hold:

1 r+s 1 s
4[\/51]‘I/< 5 )Ss—r/r U(u)du < (2 —4) [¥(r) + U(s)].

Theorem 1.4 (Holder-Iscan integral inequality [8]). Let p > 1 and % + % =1. If
f and g are real functions defined on interval [a,b] and if |f|’, |g|* are integrable
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functions on [a,b] then

b % b q

[ 1s@on < ;1 (/ (b—x)lf(x)l”dar> (/ <b—x>|g<x>qczx>
; " :
+< / (wa)lf(x)l”dx> ( JCED |g<x>|"dz>

2. Some new integral inequalities for exponential type P-functions

The main purpose of this section is to establish new estimates that refine Hermite-
Hadamard inequality for functions whose first derivative in absolute value is exponen-
tial type P-function and then we will compare the results obtained with both Hélder,
Hélder—igcan integral inequalities and prove that the Hélder—i§can integral inequality
gives a better approximation than the Holder integral inequality. In this section, we
will denote by L [r, s] the space of (Lebesgue) integrable functions on [r, s] .Iscan [7]
used the following lemma:

Lemma 2.1 ([7]). Let f : I CR — R be a differentiable mapping on I°, such that
f" € Lla,b], where a,b € I with a < b and 0, \ € [0,1]. Then the following equality
holds:

(1= 6) (\F(@) + (1= A)LF(B) + 0F (1~ N+ Ab) - —/ I
= (b—a) [—V /Ol(t—e)f’ (ta+ (1 —t) [(1 — N)a + \b]) dt
e —)\)z/ol(t—e)f’ (th+ (1—1)[(1 —)\)a—i—)\b])dt] .
Theorem 2.2. Let f : I C [0,00) — R be a differentiable mapping on I°, such that
€ Lla,b), where a,b € I° with a < b and A6 € [0,1]. If |f'| is exponential type

P-function on interval [a,b], then the following inequality holds
/ fla
—a
2(b—a) (27 +2¢'77 — 202 +20 — ¢ — 2)

X [RA(S @1 (A0 + (0= N2 AQL O AD] (1)

where Ay = Ax(a,b) = (1=X)a+Ab, and A(u,v) = Ay j5(u,v) = 2 is the arithmetic
mean

(1=0)(Af(a) + (1 =) f (1) +0f (1 = Na+ Ab) —

Proof. Using Lemma 2.1[7]theorem.2.1 and the following inequalities

[f (ta+ (1 =t)ex)] < (e +e' = =2) [|f ()| + | f(AN)]]
[f(tb+ (1 =tex)] < (e + e =2) (I O] + | (A,
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we get

(1) (\F(@) + (1= NF(B) +0F (1= Na+ 7))~ = [ fla)da

IN

(b—a)

)\2f0|t—9|f|(ta+(1—t)AA)|dt 1
F (=N [0 (th+ (1 —t)Ay)|dt

(b a) [AQ / = 0] (" + e — 2) [ (@)] + | f(AV)]] b

IN

1
N N IR B I TCIRAT VNI I
0
1
= -0 [RLr@I ] [ - ol - 2)ar

1
+(1 =) Hf’(b)l+|f’(fh)l}/0 [t =0l (" +e' 7" = 2) dt}
= (b—a) [N]f(a)]+|f (A\] (2¢* +2¢' 7 — 20 + 20 — e — 2)
(L= AP O+ 1 (AN)] (267 +26177 =207 420 — e - 2)|
= 20— a)2A(|f ()], [f'(AN)]) (2¢? + 27 — 2% + 20 — e — 2)
+2(b—a) (1= N> A(|f'®), £ (AN)]) (2¢7 + 2170 — 207 + 20 — e — 2)
= 2(b—a)(2e” +2¢' 77— 20 +20 — e —2)

X [RAF @17 AN + (=2 AL O 17 (AN)]
where
/1|t—9| (e"+e' "t —2)dt =2 + 2" — 207 +20 —e — 2
0

This completes the proof of the theorem. O

Theorem 2.3. Let f : I C [0,00) = R be a differentiable mapping on I°, such that
f’ € Lla,b], where a,b € I° with a < b and \,0 € [0,1]. If |f'|?,q > 1 is exponential
type P-function on interval [a,b], then the following inequality holds

(1—6) (\f(a) + (1 — N F() +6F (1 — Na + Ab) ——/ fa

gl 4 (1 — )™ ;
p+1

x [V 1@+ £ A0+ 1= IPOF + 7@ ], @)

Q=

< (b—a)(2e—4)

where%—i—%:l and Ay = (1 —X)a+ Ab.
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Proof. Using Lemma 2.1[7]theorem.2.1, well known Holder’s integral inequality and
the following inequalities

[ (ta+ (1= t)ex)|
[f (tb+ (1= t)ex)|”
which is the property of the exponential type P-function of |f’

(" +e = =2) [IF' (@) + £ (A0)*]
(" +e = =2) [l )" + 11" (AN)["]

| q

<
<
, we get

(=6 (@) + (1= NFO) + 07 (1= N+ 30) = 2 [ i

< (b—a)/o1 [t — 0|\ |f' (ta+ (1 —t)Ax)|dt

+(b—a)/01 [t — 0] (1L—X)|f (tb+ (1 —t)AN)|dt

< (b—a) (/01 t0|pdt)117 (/01)\2‘1]f’(taJr(lft)AA)]th)a
+(b—a)(1—N)? (/01 t—9|Pdt>; (/01 (1—)\)2‘1}f’(tb+(1—t)A)\)|th>;
< (h—a) (/01 It — 0|pdt>; (/01 (¢ + et —2) N2 [|f(@)]* + | £ (Ax)]"] dt)a
+(b—a) (/01 [t — 6|7 dt)zl] (/01 (e +e' "  =2) =N [|f'®)|" + | £ (AN)]"] dt)é
— (b-a)(2e—4)F (W);
<O 1@ 417 A0 T+ (=2 @)+ 7 a0 .
where
/01 t—oPd = %,
/1 (e"+e' " —2)dt = 2e—4.
This completes the prO(:f of the theorem. O

Theorem 2.4. Let f: I C [0,00) — R be a differentiable mapping on I°, such that
f' € Lla,b], where a,b € I° with a < b and \,0 € [0,1]. If |f'|? is exponential type
P-function on interval [a,b] and q > 1, then the following inequality holds

(1) (\f(@) + (1= NF(B) +0F (1= Na+ 7)) — = [ fla)da

1—1

1 1 a
< 2i(b—a) (92_9+2> [2¢? +2e'% — 267 + 20 — e — 4]

Q=

x X245 (1@, 17/ (AN + (1= 27 A5 (7@ 17A0)], @)

where % + % =1, Ay = Ax(a,b) = (1 = N)a+ Ab, and A(u,v) = Ay jp(u,v) = “32 is
the arithmetic mean.
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Proof. From Lemma 2.1[7]theorem.2.1, well known power-mean integral inequality
and the property of exponential type P-function of |f’|?, we obtain

o

<

IN

<

+(b—a)( (/ |t—0|dt) o (/1 [t—0] (e +e' =" =2) [|F®]" + |f(AN)]Y] dt)

6) (Mf(a) + (1— N F(b)) + 07 (1 — >a+Ab——/f )da

(b— a))\2/0 [t =0 |f (ta+ (1 —t)Ax)|dt

+(b—a)(1—)\)2/01 It — 6] 7 (b + (1 — 1) Ay)| dt

A’ (/1|t—9|dt>l_é (/1|t—9||f’(ta+(1—t)A>\)|th>}1
+(b— </ \t—0|dt> o (/01 t—0||f’(tb+(1—t)AA)‘th>;
(b—a)\’ (/ |t70|dt) : (/01 [t—0](e" +e' =" =2) [|f'(a)| + | (Ar)]"] dt)

Q=

Q=

(b—a)/\2(92—9+2> %(Hf )"+ [£(AN][1] 267 + 26"~ 20% 420 — e — 4] )

+(b—a)(1—\)? (92 0+ ;)1 ([|f’(b)|q + 1A [269 +2e'70 — 20> + 20— — 4])

Q=

1— 1
%(b—a)(02—9+%) [269+2e1*9—292+26—e—4}q

x XA (7@ £ A" + @ =07 A7 (1O £ (a0])],

where

! 1

/ t—0|dt = 0*—0+=

0 2

1
/ [t—0] (e +e' " —2)dt = 2" +2'7" -2 +20—e—4
0
This completes the proof of the theorem. O

Corollary 2.5. Under the assumption of Theorem 2.4theorem.2.4, If we take ¢ =1
in the inequality (3equation.2.3), then we get the following inequality:

(1-0) (\f(a) + (1 \)£(B)) +0f (1~ Na + Ab) ——/ fla

< 2(b—a)[2” +2e'77 — 207 +20 — e — 4]
X [RA(f @117 + (1= 22 AN O 1A -

This inequality coincides with the inequality (1equation.2.1).

1
q

Q=
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Corollary 2.6. Under the assumption of Theorem 2.4theorem.2.4, If we take 6 =1
in the inequality (3equation.2.3), then we get the following inequality:

‘f((l—)\)a—i—)\b)—bla/ f(w)da

<@-aet (3) 1 [RAT(I@I A + 0N (O 17 A)].

Corollary 2.7. Under the assumption of Theorem 2.4theorem.2.4 with 6 = 1, If we
take |f'(x)| < M, x € [a,b] then we get the following Ostrowski type integral inequality:

< M(b—a)eh (;) a0 o]

f@)- 5 [ rwa

for each x € [a,b].

Proof. There exist A, € [0,1] such that x = (1—=XAg)a+ Ab for each = € [a,b]. So,
we take \; = 7== and 1 — A\, = ¢==. Therefore, for each = € [a,b] we obtain the
required inequality from the 1nequahty (3equation.2.3). O

Corollary 2.8. Under the assumption of Theorem 2./theorem.2.4 with 6 = 1, then
we have following generalized trapezoid type integral inequality

b
s | fes

12 )
<cto-a)(3) AT (I@I @ + 0Nt (PO 17 ).

where ¢ = (1 — X)a + Ab.

Af(a) + (1 -

Corollary 2.9. Under the assumption of Theorem 2.4/theorem.2.4 with \ = % and
0= 2 then we have the following Simpson type integral inequality

: [f( )+ af (““’)H ]

7 1—1 8 1
(b—a) <18) ’ |:2€§+2€§—6—9:|q

<[rat (i@ (S20)] ) + 345 (o s (S22)])]

Corollary 2.10. Under the assumption of Theorem 2.4theorem.2.4 with A = % and
0 =1, then we have the following madpoint type integral inequality

3+

Q=

< 2

i (| bk

)
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Corollary 2.11. Under the assumption of Theorem 2.4theorem.2.4 with A = % and
0 = 0, then we have the following trapezoid type integral inequality

b
M@+ (L= Nf0) - [ fa)do

cev=n (2)" o o (552 (o (53]

Theorem 2.12. Let f: 1 C[0,00) — R be a differentiable mapping on I°, such that
1 € L|a,b], where a,b € I° with a < b and \,0 € [0,1]. If |f'|*,q > 1 is exponential
type P-function on interval [a,b], then the following inequality holds

(1=0)(Af(a) + (1 =X)f(b) +0f((1— )a+Ab—7/f

< 2(b—a)(e —2)4 [N [I1/@)17 + 17/(ANI7] 7 + (1= 27 [1FO)I" + 17/ (40)1] 7]

(p_9_|_2)9p+1+(1_9)p+2 v 9p+2_|_(p+9_|_1)(1_9)p+1 »
xl( e ) (T ey )] @

where%Jr%:l and Ax = (1 — XN)a + Ab.

Proof. Using Lemma 2.1[7]theorem.2.1, Holder-Iscan integral inequality and the fol-
lowing inequalities

" (ta+ (1= t)e)|”
[/ (th+ (1 = t)e)|*

which is the property of the exponential type P-function of |f’

(e +e =" =2) [I[f' @ + [ (A)I]
(e +e' = =2) [lF/®)" + | (AN]"]

| q

IN A

, we get

b
(1= 6) (@) + (=270 +07 (1= Na+30) - 2 [ fayaa
< (bfa)/l [t — 0| N | (ta+ (1 —t)Ax)| dt

+(b—a)/01|t—9|(1—)\)2|f’(tb+(1—t)AA)|dt

<(b-a) {(/01(10 |te”dt); ([a-oxnr (1tcz+<1t>m>!‘*clt)é
+(/01tt—0|”dt)’l’ (/Oltﬁq\f’(ta+<1—t)A»>}th);}
+(b—a){(Ll(l—tﬂt—@I”dt); ([a-a-xmr (tf»+<1—rf>/m|qclzf)é
+(/Oltt—o|pdt);’ (/Olt(l—A)Q"If’(tb+(1—t)Ax)|th>;}
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1

< (b—a) {(/01(1 _ 1) t—9|pdt>; (/01(1 S (et et 2) N | (@) + £ (AN)]] dt) !

+ (/Olﬂt—e\pdt)p (/Olt(e%el‘tz) N F @]+ | £ (A|] dt);}
+(ba){(/01(1t)|te|f?dt>’l’

x (/ (A=) @ =N (" +e 7 =2) [[F/ O + | (An)]] dt)

+(/O t|t—0 |”dt> (/Olt(et+e1‘t—2)(1—A)2q [|f/(b)|q+|f/(A>\)|q]dt>(lz}

— —a (p_9+2)9p+1+(1_9)p+2 %) e — 2q ,(L q ’ q %
= 0 >{( ) (= 2 [ @I+ 1 (A0

02 O+ ) —OPTN\T e ATy
+< (P+1)(p+2) ) (e =22 [[f(@)|" + [ (A)]"]) }

0 0p+1 g)P+2 % 2 ’ q / a1\ 5

(b—a) {(p +2 p-i-;) ) ) (e=2) =X [F'®|" + [ (A)]])*
+(
(p+

P2 P\ P z
+<9 %Ufme) )’ (= a-v" (70 Vﬂfwﬂm”}

et [(mO O a0t 0 (pr o) (1 -0
= b-a)e—2) {( 2O OO (et D G )]

< PEIF @I+ 17 AT+ =2 [+ (][] ]

where
[0 oe—opa = L0200
0 P+1)(p+2)
[heapa - S0 D00
0 (p+1)(+2)
1 1
/(lft)(et+elftf2)dt = /t(6t+617t72)dt:672.
0 0
This completes the proof of the theorem. O

Remark 2.1. The inequality (4equation.2.4) gives better results than the inequality
(2equation.2.2). Let us show that

((p_9+2)9p+1+(1_9)p+2>;17+ (6p+2+(p+9+1)(1_9)p+1>11;
P+1)(P+2) P+1)(p+2)

. p+1 _ pyptl %
<2q<9 +(1-0) >

p+1
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Using the well known classic inequalities u* + v < 217 (u 4+ v)*, u,v € (0,00),\ €
(0,1], by sample calculation we get

((p9+2>9p“+(19>p“>§ (0p+2+(p+9+1) (1a)p+1>é
(p+1)(p+2) (p+1)(p+2)
<o} ((p_eﬂwm+(1—9>”“+0”“+(p+0+1)(1—9>p+1>;

(p+1)(p+2)
gpr+1 + (1 _ 9)p+1 P
p+1

which is the required.

=

=2

3. Applications for special means

Throughout this section, for shortness, the following notations will be used for special
means of two nonnegative numbers r, s with s > r:

1. The arithmetic mean

A= A(r,s) = rts

2 )

r,s > 0.

2. The weighted arithmetic mean
Ag(rys) =1 —a)r+as, r,s >0,a €[0,1].
3. The geometric mean
G :=G(r,s)=+/rs, r,s>0.
4. The weighted geometric mean
Gy = Go(r,s) =717 r.s>0ac(0,1].

3. The harmonic mean
2
H:=H(rs) = —— 1r5>0.
r+s

4. The logarithmic mean
S—T
L:=L(r,s) = { lns;lr”“’ :fz ;1,8 > 0.
: =
5. The p-logarithmic mean

1
gPHl_pp+1\ b
L,:=L,(rs)= ((p+1)(s—r)) , r#speR\{-1,0} ;18> 0.

T, r=s
6.The identric mean
1
1 /s%\s "
I::I(r,s)z() , 1,8>0.

e \r"

These means are often used in numerical approximation and in other areas. How-
ever, the following simple relationships are known in the literature:
H<GLSLLI<A
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It is also known that L,, is monotonically increasing over p € R, denoting Lo = I and
L_1=1L.

Proposition 3.1. Let \,0 € [0,1], r,s € [0,00) with r < s and n > 2. Then, the
following inequalities are obtained:

|[Ag (A1_x(r",s™), AN(r,s)) — Ly (r,s)| < 4n(s —r)
(f+e 0= +0-2—1) RA( LA + (-0 A" A7)
Proof. The assertion follows from the inequalities (lequation.2.1) for the function
flx)=2", z€[0,00).
(]

Proposition 3.2. Let A\, 6 € [0,1], r,s € (0,00) with v < s . Then, the following
inequalities are obtained:

’Ag (Al_,\(r_l,s_l),Agl(r,s)) — L_l(r,s)‘
<4(s—r) (ee +el70 - 02 40— g — 1) [/\QH_1 (7"2,14%\) +(1=XN*H! (sQ,Ai)} .
Proof. The assertion follows from the inequalities (lequation.2.1) for the function
fx)=2"1 z€(0,00).
O

Proposition 3.3. Let \,0 € [0,1], r,s > 0 with r < s. Then, the following inequali-
ties are obtained:

(G
I

<4(s—r) (ee +e' 70 6% 10— g — 1) [)\QH_l (r,Ax)+(1—=X?H™? (s7A>\)} :

Proof. The assertion follows from the inequalities (lequation.2.1) for the function

f(z)=Inz, = >0.

4. Conclusion

In this paper, with the help of an identity, some new Hermite-Hadamard type integral
inequalities are obtained using the Holder and power-mean integral inequalities for
functions whose first derivative in absolute value is an exponential type P-function.
The authors can obtain new types of integral inequalities for exponential type P-
functions using different identities. Then, the authors compare the obtained results
with both Holder and Holder-Iscan integral inequalities and show that Holder-Iscan
integral inequality provides a better approximation than Holder inequality.
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