Analso Sile University of Graiova The Chemistry Series VOLUME 200 No 1, 2013

Annals of the University of Craiova The Chemistry Series

Editor in Chief

► Mihaela MUREŞEANU University of Craiova,

^{/a,} Department of Chemistry

Editorial Board

Cezar SPÎNU University of Craiova, **Department of Chemistry**

Liliana LEFTICARIU
 Southern Illinois University Carbondale

Michel L. SCHLEGEL Commissariat a l'Energie Atomique (CEA)

r Michael DESCOSTES Commissariat a l'Energie Atomique (CEA)

Vasile HULEA
Institut Charles Gerhardt, Matériaux Avancés
pour la Catalyse et la Santé

□ Aurelian DOBRIŢESCU University of Craiova, Department of Chemistry

Contact

Phone: +40 251 597048 Fax: +40 251 597048 Web page: <u>http://chimie.ucv.ro/aucvcs</u> E-mail: office@chimie.ucv.ro

Cerium Titanates. Synthesis and Structural Investigations

Nicoleta Cioateră^{1*}, Elena-Adriana Voinea¹, Aurelie Rolle², Rose-Noelle Vannier²

¹University of Craiova, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Craiova, Romania ²Unité de Catalyse et de Chimie du Solide, Equipe de Chimie du Solide, UMR CNRS 8181, ENSCL / UST Lille 1, BP 90 108, 59652 Villeneuve d'Ascq Cedex, France

Received: 07.03, 2013/ Accepted: 10.04, 2013

+ Abstract

Ceria-titania mixed oxides with $CeTi_2O_6$ and $CeTiO_4$ compositions have been synthesized using two diffrent methods: the sol-gel method and a modified Pechini method. By adequate thermal treatment of the resulted gel or solid resin, cerium oxidation state can be ajusted. XRD and FT-IR analysis of the solid oxides evidenced the formation of $CeTi_2O_6$ and $CeTiO_4$ crystalline phases.

Keywords: sol-gel synthesis; mixed oxide; ceria; titania.

INTRODUCTION

 TiO_2 and CeO_2 solid oxides were widely investigated mainly for photocatalytic and catalyst support applications, while titania-ceria mixed oxides exhibited interesting properties for gas sensors and electrochromic devices ¹. Different synthesis procedures were used for their preparation such as precipitation and sol-gel synthesis.

Depending on Ti : Ce ratio and cerium oxidation state, different cerium titanates can be obtained. Thus, Ce^{3+} is involved in Ce_2TiO_5 (reddish-brown), $Ce_2Ti_2O_7$ (reddish-brown) and $Ce_4Ti_9O_{24}$ (chestnut), while $CeTi_2O_6$ and $CeTiO_4$ are yellow cerium titanates with Ce^{4+} . Cerium oxidation state can be tuned by controlling the thermal treatment atmosphere. The formation of cerium titanate phases with Ce^{3+} is favoured when the thermal treatment is performed in reducing environments. By thermal treatment in air, Ce^{4+} titanates are obtained; they exhibit higher photocatalytic activity than Ce^{3+} phases².

Unlike many titanates with general formula $Ln_2Ti_2O_7$ which posess a pyrochlore-type crystalline structure, $Ce_2Ti_2O_7$ exhibits a layered perovskite structure. The isometric pyrochlore structure is favoured when $r_{Ln^{3+}}/r_{Ti^{4+}}$ ratio falls in the range $1.46 - 1.78^{-3}$. For $Ce_2Ti_2O_7$, the ratio between ionic radii of octa-coordinated Ce^{3+} (1.143 Å) and hexa-coordinated Ti^{4+} (0.605 Å) $(r_{Ce^{3+}}/r_{Ti^{4+}} = 1.89)^{-4}$ is higher than the upper limit of the pyrochlore stability range and this compound has a monoclinic structure (*P* 2₁ space group) (Fig. 1 and Table 1).

 Ce_2TiO_5 has an orthorhombic structure (space group *Pnma*), Ti is penta-coordinated with oxygen, while Ce is hepta-coordinated ⁵ (Fig. 2).

 $CeTi_2O_6$ is a brannerite-type oxide with monoclinic structure (space group C2/m). Its structure consists in layers of TiO₆ octahedra, alternating with columns of CeO₆ octahedra (Fig. 3) ⁶. Thermal treatment and synthesis procedure have a strong impact on the oxygen stoichiometry in this oxide.

 $Ce_4Ti_9O_{24}$ crystallizes in the orthorhombic space group Fddd (similar to Nd₄Ti₉O₂₄), with TiO₆ octahedra, CeO₆ distorded square antiprisms and CeO₆ octahedra⁷.

In this study, the preparation of $CeTi_2O_6$ and $CeTiO_4$ phases by sol-gel and modified Pechini methods, respectively, is presented.

5

^{*} Corresponding author: cioatera.nicoleta@ucv.ro

Figure 1. Crystal structure of $Ce_2Ti_2O_7$ (1404676-ICSD) ⁸

Figure 2. Crystal structure of Ce₂TiO₅ (1404675-ICSD) ⁸

Figure 3. Crystal structure of CeTi₂O₆ (308333-ICSD) ⁹

Compound	Space group	<i>a</i> , Å	b , Å	<i>c</i> , Å	$V, Å^3$
Ce ₂ Ti ₂ O ₇	$P2_1$	7.776	5.515	12.999	551.53
Ce ₂ TiO ₅	Pnma	10.877	3.893	11.389	482.26
Ce ₄ Ti ₉ O ₂₄	Fddd	14.082	14.516	35.419	7240.15
CeTi ₂ O ₆	C2/m	9.840	3.750	6.910	222.47

 Table 1. Structural parameters of different ceria-titania mixed oxides

EXPERIMENTAL

Ceria-titania mixed oxides have been synthesized using two methods. As starting cation precursors, cerium (III) nitrate hexahydrate (Sigma-Aldrich, >99.9 %) and titanium (IV) propoxide (Sigma-Aldrich, >98 %) in stoichiometric proportion were used. In the first method (the sol-gel method), both sals were disolved in isopropyl alcohol (i-PrOH). Acetylacetone (acac) was added to moderate the alcoxide hydrolysis kinetics, thus preventig the precipitation of titanium oxyhydroxide. The molar ratio Me : H_2O : i-PrOH : acac = 1 : 10 : 50 : 0.3 was used. After salts and acac dissolution in i-PrOH, the solutions were mixed together and continuosly stirred for 2 h. Then distilled water was dropwise added into the reaction mixture. The mixture was allowed to gel for 24 h. The resulted gel was dried at 120 °C overnight and the thermal treatment of as-obtained powder was performed in four steps: (i) heating in air with a 2 °C/min rate from room temperature to 350 °C, (ii) holding at 350 °C for 2 h in air in order to remove the organics, (iii) heating in 3 % hydrogen – nitrogen mixture from 350 °C to 850 °C with a rate of 2 °C/min, (iv) holding at 850 °C for 6 h under reducing atmosphere. In the second method (a modified Pechini method), the cation salts and citric acid were dissolved in water. The pH was ajusted to 7 with ammonia. Triton X-100 was used as structuring agent. After removal of excess solvent, the resulted gel was dried at 120 °C overnight. The as-obtained solid resin was calcined in air at 950 °C for 5 h.

Ceria-titania mixed oxides were analysed by symultaneous TG/DTA measurements, FT-IR spectroscopy and X-ray diffraction (XRD). TG/DTA measurements were performed using a Diamond TG/DTA (PerkinElmer) in air FT-IR spectra were recorded on KBr pellets using a Bruker Alpha spectrometer. A D8 Bruker diffractometer equipped with Vantec1 linear detector was used for the analysis of powder in the range of $2\theta = 10^{\circ}-80^{\circ}$ with a 0.0148° step size.

RESULTS AND DISCUSSIONS

TG/DTA curves corresponding to the precursor solid resin of ceria-titania mixed oxide prepared by modified Pechini method are shown in Fig. 4. The first endothermic wide peak from r.t. to about 230 °C can be ascribed to the removal of solvent (water), while the following three exothermic peakes centered at 270 °C, 350 °C, and 400 °C respectively can be attributed to the removal of organics.

Figure 4. TG/DTA curves for the solid resin of ceria-titania mixed oxide

The X-ray diffraction pattern of the calcined powders (Fig. 5) evidenced a poor crystallization sample for the powder prepared by sol-gel method and thermal treated under reducing atmosphere (Fig. 5a). The characteristic peaks of monoclinic $CeTi_2O_6$, as well as the ones of cubic CeO_2 and tetragonal TiO₂ were identified in the XRD pattern. It is well known that Ce^{4+} is stable in solution and in air. By thermal treatment in hydrogen-nitrogen mixture, some of Ce^{4+} is reduced to Ce^{3+} and the formation of $CeTi_2O_6$ phase is favoured ¹⁰.

For the powder obtained by modified Pechini method, only the charactersitic peaks of $CeTiO_4$ could be evidenced in the XRD pattern (Fig. 5b). Unfortunately, the crystalline structure of $CeTiO_4$ was not elucidated yet ¹¹.

Figure 5. XRD patterns of ceria-titania mixed oxide powders prepared by sol-gel method (a) and by Pechini method (b)

Figure 6. FT-IR spectra of ceria-titania mixed oxide powder calcined at 950°C

Fig. 6 shows the FT-IR spectra of the calcined mixed oxide powder synthesized by modified Pechini method. The broad peak from about 3500 cm⁻¹ can be attributed to the hydroxyl group stretching vibration, while the weak peak from 2365 cm⁻¹ is characteristic to adsorbed CO₂ from air. The strong band from about 500 cm⁻¹ is ascribed to Ti-O bond and the one from ~ 600 cm⁻¹ is due to the Ti-O-Ce bond vibration. This last band is very wide in pure titania, being modified in TiO₂-CeO₂ mixed oxides by the presence of Ti-O-Ce bonds. The band from arround 400 cm⁻¹ suggests the formation of Ce-O bond ^{12, 13}.

CONCLUSIONS

 $CeTi_2O_6$ and $CeTiO_4$ mixed oxides have been obtained using two synthesis procedures. Sol-gel method was involved in the preparation of $CeTi_2O_6$, the thermal treatment of the gel being ajusted in order to reduce Ce^{4+} to Ce^{3+} . Using a modified Pechini method, combined with thermal treatment in air for the resulted solid resin, $CeTiO_4$ was obtained. XRD and FT-IR analysis of the solid oxides evidenced the formation of $CeTi_2O_6$ and $CeTiO_4$ crystalline structures.

REFERENCES

- T. Kidchob, L. Malfatti, D. Marongiu, S. Enzo, P. Innocenzi, *Thin Solid Films* 518 (2010), 1653.
- 2. V. Vales, L. Matejova, Z. Matej, T. Brunatova, V. Holy, J. Phys. Chem. Solids 75 (2014), 265.
- 3. G. Herrera, J. Jimenez-Mier, E. Chavira, *Mater. Charact.* 89 (2014), 13.
- 4. R.D. Shannon, Acta Cryst. A32 (1976), 751.
- 5. F.X. Zhang, J.W. Wang, M. Lang, J.M. Zhang, R.C. Ewing, J. Solid State Chem. 183 (2010), 2636.
- 6. L.T. Huynh, S.B. Eger, J.D.S. Walker, J.R. Hayes, M.W. Gaultois, A.P. Grosvenor, *Solid State Sci.* 14 (2012), 761.
- N. Hubner, R. Gruehn, Zeitschrift fur Anorganische und Allgemeine Chemie 616 (1992), 86.
- 8. A. Preuss, R. Gruehn, J. Solid State Chem. 110 (1994), 363.

- 9. A.M. Lejus, D. Goldberg, A. Revcolevschi, C.R. Acad. Sci. Paris Ser. C 263 (1966), 1223.
- 10. J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Appl. Surf. Sci. 253 (2007), 8952.
- 11. S. Otsuka-Yao-Matsuo, T. Omata, M. Yoshimura, J. Alloys Compund. 376 (2004), 262.
- 12. M. Palacio, P. Villabrille, G.P. Romanelli, P.G. Vasques, C.V. Caceres, *Appl. Catal. A* **359** (2009), 62.
- 13. A.A. Athawale, M.S. Bapat, P.A. Desai, J. Alloys Compund. 484 (2009), 211.