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Abstract

In the framework of the general theory of random Hamiltonian dynamical sys-
tems the relation between the mean sojourn time fraction in an arbitrary domain
and the projector to the subspace of the invariant function is established. In the
particular case of the random formal Hamiltonian system related to the electrostatic
drift motion in homogenous magnetic eld, the limiting case, when the electrostatic
potential is not di erentiable is studied. By this result the general form of the pro-
jector to invariant states is established in the case of homogenous, isotropic and self
similar electrostatic turbulence. We prove that with probability one all of the tra-
jectories are either unbounded ( that coresponds to sub, normal or super di usion)
either are degenerated to a single point, that means that in the physical case when
the self similarity is approximate only the trajectories are closed curves with small
area. Implications on the electron anomalous transport in tokamak are discussed.
MSC: 60H10, 34F05.
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1 Introduction

1.1 The physical aspects

The problem of prediction of the statistical properties of the trajectories of particles
moving in a random electromagnetic eld with given statistical properties is one of the
key problems in the non equilibrium statistical mechanics, with implication on the future
technologies related to the magnetic con nement of the plasma, astrophysics[[5]].
Our problem is related to a generic problem that appears in various studies in uid

and plasma turbulence [2]: The motion of a particle in a two-dimensional incompressible
static stochastic velocity eld. Also in this case the equations can be written like random
Hamiltonian system with one degree of freedom. Similar mathematical formalism describe
simpli ed models stochastic magnetic eld line dynamics. The applications concern a
large class of physical processes and, in particular, the particle and energy transport in
hot magnetized plasmas.
The problem of describing the statistical properties of the solutions of Eq.(1) was

considered in the works [5], [3], mainly because it is a starting point in the study of the non
autonomous generalization of Eq.(1), with long range correlations. The mathematically
equivalent problem of the stochastic magnetic eld line dynamics was studied in [4], [6],
[7].
In realistic situations the random electromagnetic eld cannot be modelled with a

temporal white noise, consequently the particle motion cannot be modelled with classical
stochastic di erential equations in the Itô formalism. Moreover, due to the long range
time correlations [[5]] the Corsin approximation cannot be used. For the study of the
transversal particle transport in constant magnetic eld, with random electric eld with
polynomial decay of the time correlation function, in the zero Larmor radius approxima-
tion, a new method was elaborated [[3], [4]], for the study of the di usive behavior. In
this article this problem, will be studied, in the opposite extreme limit of white noise
model: the model with frozen turbulence approximation. This extreme limit is important
because it is also a starting point of the DCT method.
The problem studied here, in the framework of the in nite ergodic theory, [[13]], is to

obtain information on the mean sojourn time of a family of particles in a given domain,
when the distribution of the initial position is given. This problem has a particular case:
to estimate the mean sojourn time fraction, that means the time fraction spent in the
domain where from the initial condition is randomly selected according to given initial
distribution. This problem appears naturally for the application in magnetic con nement
fusion, where it is desirable that a large fraction of the trajectories to have bounded
trajectories.
The computational complexity of this class of problems higher then the lattice QCD

with fermions. It is natural to consider as the analogue of the "Ising model" of non
equilibrium statistical mechanics.
In the framework of the in nite ergodic theory, when the volume of the phase space

is in nite , the mean sojourn time give a partial statistical information about geometry
of the trajectories. We will prove that in very general situations, the problem of mean
sojourn time fraction can be expressed as suitable matrix element of projection operator
to the invariant states, that appears in the von Neumann mean ergodic theorem. In the
particular case of the problem of particle motion in a constant magnetic eld, in the
frozen turbulence and drift approximation, the mean sojourn time fraction is related to
the statistical properties of the equipotential surfaces, that again can be expressed and
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reformulated in the term of projector on subspace of measurable functions with respect
to the algebra generated by random electrostatic potential. By this reformulation the
problem of the mean sojourn time fraction can be treated in the extreme, but solvable
limit when the electric eld is self similar, homogenous and isotropic (SHI), which is only
Hölder continuos but not di erentiable. A class of examples of SHI random elds, the
fractional Brownian eld, was already studied in [24]

We prove that under the SHI assumptions the mean sojourn time fraction of a
trajectory is either 0 (in this case the particle has unbounded trajectory ) , either the
particle is completely trapped in a single point.
Recall that in physical situations, when the random eld is not exactly self similar

at small distances less than a critical distance , this means that the area enclosed by
a closed trajectory has the order of magnitude ( 2) . This property is an interesting
physical manifestation of the fractal nature of SHI random elds.
Consequently if we consider the problem of the particle transport in homogenous,

isotropic random electric eld that is obtained by a regularization of the SHI model,
with the very short wavelength components ltered out, the mean sojourn time fraction
is related to the geometry of the level surfaces of an SHI random eld with continuous
realizations. We prove that almost surely the connected components of the level surfaces
enclose in nite or zero area.

1.2 The physical problem

In order to illustrate the our initial problem, we consider an one degree of freedom,
autonomous, random Hamiltonian systems. The typical interesting case is the charged
particle motion, in the zero Larmor radius approximation, transversal to constant mag-
netic eld B, under the e ect of the random, static, electric potential (x). The po-
tential that contains a set of random parameters, generically denoted by that are
elements of a probability space . More exactly we denote by ( A ) the probability
space and its algebra related to the realizations of the random electric potential in R2,
x ( 1 2) R2, are Cartesian coordinates perpendicular to the magnetic eld . Then
for the scalar function (x) is the random potential. In this limit the dynamics
is speci ed by an one degree of freedom random Hamiltonian system, with Hamiltonian
function (x) = |B| (x) see e.g. [5]

( )
= |B|

(x ( ))
(1)

Here is the two dimensional Levi-Civita symbol. In this case the trajectories are
exactly the level sets (x) = . In typical cases the mean sojourn time of a family of
trajectory in a nite domain will be zero when the level sets are open.
In this article the main result is that under SHI assumptions the mean sojourn time is

either zero, that means that the with probability one the level sets are open curves, going
to in nity, either.

The rst problem is related to the fact that under SHI assumptions (x) is non
di erentiable a.s. This aspect will be circumvented by reformulation of the initial problem
in the term of statistical geometry of the level surfaces of (x).
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2 Intuitive approach: mean sojourn time, the von
Neumann mean ergodic theorem, conditional ex-
pectation values

2.1 Deterministic case

2.1.1 Mean sojourn time fraction and the projector to the subspace of in-
variant states

In order to de ne the mean sojourn time the general framework of the Hamiltonian
dynamics with random perturbations of the Hamiltonian function, we consider rst an
autonomous deterministic Hamiltonian dynamically system, for the sake of simplicity with
phase space M =R2 . Generalizations are obvious. We denote by x = { 1 2 }
{ 1 1 · · · } the canonical phase space coordinates, by (x) the Hamiltonian,
by (x) the invariant Liouville measure and by x (x) the di eomorphism group
associated to (x) [8] Let (x) the probability density of the distribution of the initial
positions of the trajectories. We will denote by (x) the characteristic function of the
domain M . We will denote by the Lebesgue measure and =

¡
R2

¢
, 1. The proofs and the notations will be simpli ed by the use of Hilbert space
formalism of ergodic theory [9]. In the Hilbert space 2 we have the canonical scalar
product, invariant under (x)

h i =
Z
M

(x) (x) (x) (2)

Remark 1 In the following we suppose that (x) and (x) are square integrable, i.e.
the probability density (x) 1 2 and ( ) .

For any (x) 2 we de ne the unitary operator (Koopman [9]) as follows

( )(x) =
£

(x)
¤

(3)

We observe that, in particular, the function ( ) ( ) = ( (x)) 2 describes the
visit at the time of the nite domain . Consequently, the mean value 1

R
0
( )(x) =

1
R
0

[ (x)] is the mean sojourn time in of the trajectory that started from the
initial position x. By averaging over initial positions x with the probability density
(x) 1 2, the mean sojourn time will be

( ) :=
1
Z
0

h i (4)

that represents the mean sojourn time in the domain , during the time interval (0 ),
of the particles that started according to the distribution (x). For large time the
quantity ( ) is one of the candidates, which can describe the trapping e ect, or
the degree of con nement in the domain M.
By Liouville theorem is unitary operator. We denote by H the subspace

of square integrable invariant functions with respect to the dynamics generated by the
Hamiltonian function . From von Neumann mean ergodic theorem [10], [12], [9] results
that the strong limit

lim
1
Z
0

:= b (5)
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exists (as a limit in 2) for any 2, and b is the projection operator on the subspace
H . We have the equivalencies

H b = = (6)¡
(x)
¢
= (x) (7)

It follows that

lim
1
Z
0

h 1 2i =
D

1
b

2

E
(8)

also exists for all 1 2 2 . Consequently the limit in Eq.(4) exists when is
nite and (x) is square integrable. We will denote this limit by ( ). According
to Eq.(8) the latter limit can be rewritten in the terms of b

( ) =
D b E

(9)

From the de nition 5 follows that the b preserves the positivity: if 2 and
(x) 0 almost everywhere () then also

h b i
(x) 0 almost everywhere .

Particular cases of the projector b Suppose that there is some invariant domain
R2 under : ( ) = . Denote by b the restriction of b on the invariant

subspace 2( ) of the 2 functions with support in
In the case 0, a R2 we denote by a R2 the interior of that con-

nected component of the level subset {x|x R2 | (x) (a)| } that contains the
point a and by a(x) its characteristic function. In the must interesting cases, when
= 1 and there is no open domain in R2 where (x) is constant, the closure of the

linear combination of functions a(x) span the whole invariant space H . Because
a(x) 2 i ( a) , the following cases of invariant functions, invariant

domains will appear in this study.

Generic case, con nement. If ( a) then a(x) H 2 If at
least such a domain exists then clearly the projection operator b is non trivial.

Non generic case, con nement. In the case = 0, if for some a 0 a 6= ,
that means , there is some open domain, containing a where (x) is constant, then in
fact any open subset 0 = 0 a is an invariant domain and if 0 is set su ciently
small such that ( 0) , then 0(x) H . In this case it is clear that b = 1 ,
where 1 is the identity operator in 2( )

Conversely, if for some invariant domain R2 we have for b = 1 , then then
any function from 2( ) is invariant, so º = 1 and the Hamiltonian function is
constant in the domain .

In nite measure invariant domains, generic case, 0 Suppose that for
some and a we have ( a) = . In this case, for the restriction of the projector
the the invariant domain = a we have b = b0 .
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In nite measure invariant domains, non generic case, = 0 When =

0 a has non void interior with ( ) = , like in the previous case (2.1.1) all of the
nite measure subsets 0 are invariant, and b = b1 . In a similar manner the
converse is true: if for some in nite measure invariant domain we have b = b1 then
(x) is constant in .

Reformulations

b in the term of conditional expectation values The previous formulation
has two drawback. First, the existence of the globally de ned map requires special
treatment. Moreover, in the typical cases we are interested on the limiting cases when
the Hamilton function is not smooth, only Holder continuos. Now we try to extend
( ) c for some limiting cases, when (x) is only continuos, so the ow (x)
cannot be de ned. For an arbitrary continuous function (x), accordingly to the previous
discussion (2.1.1), in the generic case we de ne T1 the family of open sets

T1 =
©

a| 0 a R2
ª

and in order to include also the non generic case we de ne

T2 =
©

( )| 0 a a R2
ª

and T = T1 T2 . Denote byA the algebra generated by T . For 1 2 ,
the conditional expectation value with respect to the algebraA , (x) = E [ (x) |A ]
de nes a bounded operator in the Hilbert space 2 that can be extended by continuity to
a projector that projects on the sub-space of A - measurable functions. In the particular
case when (x) is smooth and b can be de ned by the evolution map we have

=
h b i

(x) (x) = E [ (x) |A ] (10)

.This remark is important because the - algebra A ,the projector b and the problem
of the mean sojourn time can be de ned safely also in the limiting case when (x) is only
continuos and non di erentiable.
Thus, according to Eqs.(4, ??), in the large time limit, the mean sojourn time in the

domain , when the distribution of the initial positions is given by probability density
function (x), can be written as

( ) :=
D b E

(11)

The operator b has all the properties of projection operator in the Hilbert space 2.
From Eq.(10) results

(x) 0 ( b )(x) 0 (12)b = b (13)

Thus the function ( ), respectively the operator b describe the geometrical
property of the trajectories.
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