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On the topological generalized crossed modules

Mustafa Habil Gürsoy

Abstract. In this paper, we define the topological versions of the concepts of crossed module

over generalized groups, which is called generalized crossed module, and generalized group-

groupoid. We construct the categories of the topological generalized crossed modules and
their homomorphisms and of the topological generalized group-groupoid and homomorphisms

between them. We also obtain some characterizations related to the concepts of topological
generalized crossed module and topological generalized group-groupoid. Finally, at the end of

the work, we prove that the category of topological generalized crossed modules is equivalent to

that of topological generalized group-groupoids whose object sets are commutative topological
generalized groups.
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1. Introduction

The idea of generalized group has been initiated by Molaei in [12], which is an im-
portant generalization of the notion of group. The most important difference of a
generalized group from a group is that it has one unit element for each element. For
this reason, each group is actually a generalized group. Generalized groups have been
studied by many mathematicians [2, 4, 7, 11].

The concept of crossed module is another fundamental element of this study. The
term of crossed module over groups first defined by Whitehead [3] was later studied
on other algebraic structures [5, 8]. In the present work, we consider crossed module
over generalized groups. This is a generalization of crossed module over groups.

In the category theory, a groupoid can be defined as a category in which every arrow
is invertible. After the topological and differentiable versions of the groupoid were
introduced by Ehresmann [1], this concept has been extensively studied by many
mathematicians with different approaches [10, 11, 15]. Structured groupoid is one
of these different approaches. A structured groupoid is a groupoid endowed with
another algebraic structure [6, 9, 10, 11, 15]. The concept of group-groupoid defined
by Brown and Spencer [15] is the most known structured groupoid. Then, Gursoy
and et.al. described the notion of generalized group-groupoid using the concept of
Molaei’s generalized group [8].

Brown and Spencer proved that the categories of the group-groupoids and crossed
modules over groups are equivalent. Then, Porter considered this equivalency in terms
of groups with operations and internal groupoids [16]. After these studies, a more
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general case of equivalences showed in [15] and [16] was proved in [8] by using the
concept of Molaei’s generalized group.

In the present work, we first give the definitions of crossed module over topological
generalized groups and topological generalized group-groupoid. Also, we prove that
the categories of topological generalized crossed modules and topological generalized
group-groupoids in which object sets are commutative topological generalized groups
are equivalent. In other words, we present the topological versions of the results given
by Gursoy and et.al..

2. Preliminaries

We present here basic concepts based on generalized groups that will be used in the
study.

2.1. Generalized groups. We give here some basic informations related to gener-
alized group.

Definition 2.1. [12] Let G be a non-empty set. For an operation on G, we say G a
generalized group if the following axioms are verified.
i) (ab)c = a(bc), for all a, b, c ∈ G
ii) For each a ∈ G, there is only one element e(a) ∈ G such that e(a)a = a = ae(a)
iii) For each a ∈ G, there is a−1 ∈ G such that a−1a = e(a) = aa−1.

The following lemma gives the characteristic properties of generalized groups.

Lemma 2.1. [12] If G is a generalized group and a ∈ G, then
i) there is a unique element a−1 ∈ G.
ii) e(a) = e(a−1) and e(e(a)) = e(a).
iii) (a−1)−1 = a.

Clearly every group is a generalized group but not conversely. However, the fol-
lowing lemma expresses the relationship between the group and generalized group.

Lemma 2.2. [13] Each commutative generalized group is a group.

The following two examples are very appropriate for us to understand the structure
of a generalized group.

Example 2.1. [13] Let G = IR × (IR \ {0}). Then G with the multiplication
(a, b) · (c, d) = (bc, bd) is a generalized group. For any element (a, b) ∈ G, the identity
is defined by (a/b, 1), and inverse is defined by (a/b2, 1/b).

Example 2.2. [11] Let G be a generalized group with the multiplication m. Then,
G×G is a generalized group with the multiplication

m1((a, b), (c, d)) = (m(a, c),m(b, d)).

For (a, b) ∈ G×G, the identity is defined by e1(a, b) = (e(a), e(b)) and the inverse is
defined by (a, b)−1 = (a−1, b−1).

Definition 2.2. [12] Let G be a generalized group. It is called normal generalized
group if e(ab) = e(a)e(b) for all a, b ∈ G.
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Definition 2.3. [12] Let f : G1 → G2 be a map between the generalized groups.
Then, the map f is called a generalized group homomorphism if f(ab) = f(a)f(b) for
all a, b ∈ G1.

Definition 2.4. [12] Let G be a generalized group and H ⊂ G. Then, H is called a
generalized subgroup of G, if ab−1 ∈ H for all a, b ∈ H.

Definition 2.5. [12] Let N be a generalized subgroup of the generalized group G.
N is called a generalized normal subgroup if there exist a generalized group H and
a homomorphism f : G → H such that for all a ∈ G, Na = ∅ or Na = kerfa, where
Na = N ∩Ga, Ga = {g ∈ G | e(g) = e(a)} and fa = f |Ga

.

Now let’s give a theorem from [4] which is necessary for the proof of Theorem 5.2.

Theorem 2.3. Let G be a normal generalized group satisfying e(a)b−1 = b−1e(a),
for all a, b ∈ G. Then, we have (ab)−1 = b−1a−1.

Let us express the concept of generalized action used in the structure of the gen-
eralized crossed module. This definition belongs to Molaei.

Definition 2.6. [13] Let G be a generalized group and X a set. A generalized action
of G on X is a map · : G×X → X such that the following conditions hold:
i) (g1g2)·x = g1

·(g2
·x), for all g1, g2 ∈ G and x ∈ X.

ii) For all x ∈ X, there is e(g) ∈ G satisfying e(g) ·x = x.

Example 2.3. [13] Let G be generalized group in Example 2.1. IR is a generalized
group with multiplication ab = b for any elements a, b. Then, since

f : G→ IR, (a, b) 7→ a

b
is a homomorphism of generalized groups, the function

: G× IR→ IR, ((a, b), c)) 7→
(ac
b

)
is clearly a generalized action.

We define the generalized action of a generalized group G on another generalized
group H. Because we need it to define generalized crossed module.

Definition 2.7. [8] Let G and H be two generalized groups. A generalized action of
G on H is a map

· : G×H → H, (g, h) 7→ g ·h

such that the following conditions are verified.
i) (g1g2)·h = g1

·(g2
·h), ∀g1, g2 ∈ G and h ∈ H

ii) g ·(h1h2) = (g ·h1)(g ·h2), ∀g ∈ G and h1, h2 ∈ H
iii) For all h ∈ H, there exists an element e(g) ∈ G such that e(g) ·h = h.
iv) g ·e(h) = e(h), g ∈ G,h ∈ H.

Example 2.4. [8] A generalized group G acts on itself with the product g · h = h.
Let us control the conditions above.

i) For all g, h, k ∈ G, g · (h · k) = g · k = k = (gh) · k.
ii) For all g, h, k ∈ G, (g · h)(g · k) = hk = g · (hk).
iii) There exists element e(g) ∈ G for all h ∈ G. Because, e(g) · h = h for all h ∈ G.
iv) For all g1, g2 ∈ G, we have the equality g1 · (e(g2)) = e(g2).
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For further details on generalized groups and generalized actions we refer to [8, 12,
13].

Let us give the definition of a topological generalized group.

Definition 2.8. [2] A generalized group G is called topological generalized group if
1) G is a Hausdorff space
2) The maps m : G × G → G, m(g, h) = gh and n : G → G, n(g) = g−1 are
continuous.

Example 2.5. [2] The generalized group G = IR × (IR \ {0}) in Example 2.1 with
the topology induced by a Euclidean metric is a topological generalized group.

Definition 2.9. [2] Let G1 and G2 be two topological generalized group. A topolog-
ical generalized group homomorphism is a continuous generalized group homomor-
phism f : G1 → G2.

2.2. Generalized crossed modules. In this section, we recall the concept of gen-
eralized crossed module given in [8].

Definition 2.10. [8] Let G be a generalized group acting on a generalized group
H, and let η : H → G be a generalized group homomorphism. Then, a generalized
crossed module is a triple (H,G, η) such that the followings are hold.
GCM1) η(h · g) = gη(h)g−1, ∀h ∈ H and ∀g ∈ G
GCM2) η(h1) · h2 = h1h2h

−1
1 , ∀h1, h2 ∈ H.

Example 2.6. [8] Let G be a generalized group and the set

I(G) =
{
fa | fa : G→ G, fa(b) = aba−1, a, b ∈ G

}
be generalized group of the inner automorphisms of G. In this case, we obtain a
generalized crossed module with the generalized group homomorphism

η : G −→ I(G), a 7−→ η(a) = fa

and the generalized action

I(G)×G −→ G

(fa, b) 7−→ fa · b = fa(b) = aba−1

It is easily shown that the conditions GCM1) and GCM2) are hold.

Example 2.7. [8] Let G be a generalized group and N be generalized normal sub-
group of G. Then we obtain a generalized crossed module (G,N, η = i) with the
inclusion η = i : N → G, n 7→ n, and the generalized action

G×N → N, (g, n) 7→ g · n = gng−1.

Definition 2.11. [8] Let (H,G, η) and (H
′
, G
′
, η
′
) be generalized crossed modules,

let τ : H → H
′

and µ : G→ G
′

be generalized group homomorphisms. Then, the pair
(τ, µ) : (H,G, η)→ (H

′
, G
′
, η
′
) is called a generalized crossed module homomorphism

if the following conditions are satisfied:
i) µη(h) = η

′
τ(h), h ∈ H

ii) τ(g · h) = µ(g) · τ(h), h ∈ H and g ∈ G.

Therefore, we obtain the category GCM of generalized crossed modules.
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2.3. Generalized group-groupoids. In this section, we give some basic concepts
related to the groupoid and group-groupoid. Afterwards, we recall the concept of
generalized group-groupoid given in [8].

Definition 2.12. [14] A groupoid consists of the set G of the arrows and the set G0

of the objects, together with the source map s : G → G0, target map s : G → G0,

the object map ε : G0 → G, x 7→ ε(x) =
∼
x = 1x, the inverse map i : G → G,

a 7→ i(a) = ā, and a partial composition (a, b) 7→ a ◦ b defined on the pullback
G2 = G ∗G = {(a, b) | t(a) = s(b)}. These maps verify the following conditions:

G1) a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G, where t(a) = s(b) and t(b) = s(c).
G2) For any a ∈ G, ε (s (a)) ◦ a = a ◦ ε (t (a)) = a.
G3) For any a ∈ G, a ◦ i(a) = ε (s (a)), i(a) ◦ a = ε (t (a)).

The maps in the definition above are called structure maps of groupoid. For a
groupoid G over G0 and x, y ∈ G0, we have the sets StGx = s−1(x), CoStGy = t−1(y)
and StGx ∩ CoStGy = G(x, y). Also, the set G(x, x) is a group with the partial
composition in G. We say it vertex group at x.

Example 2.8. [14] A group is a groupoid with only one object.

Example 2.9. [14] Any set G is a groupoid over itself with s = t = idG.

Example 2.10. [14] For a set X, the product X×X is a groupoid over X. The maps
s and t are the natural projections onto the second and first factors, respectively. The
object map is x 7→ (x, x) and the partial composition is given by (x, y)◦(y, z) = (x, z).
The inverse map is i(x, y) = (y, x).

Definition 2.13. [14] Let G and H be groupoids over G0 and H0, respectively. A
groupoid homomorphism G→ H is a pair of (f, f0) of maps f : G→ H, f0 : G0 → H0

such that sH ◦ f = f0 ◦ sG, tH ◦ f = f0 ◦ tG and f(a ◦ b) = f(a) ◦ f(b), ∀(a, b) ∈ G2.

We sometimes denote the groupoid homomorphism (f, f0) by f . Therefore, we
obtain the category Gpd of the groupoids.

Definition 2.14. [14] A topological groupoid is a groupoid G over G0 such that G
and G0 are topological spaces and the structure maps are continuous.

Let us give the definition of generalized group-groupoid which is a generalized
group object in the category of groupoids.

Definition 2.15. [14] A generalized group-groupoid G is a groupoid where G0 and
G both have generalized group structures such that the following maps are groupoid
homomorphisms:
i) m : G×G→ G, m(g, h) = gh (multiplication)
ii) e : ∗ → G, where ∗ is a singleton (unit)
iii) n : G→ G, n(g) = g−1 (inverse).

Also there exists an interchange law between the multiplication of generalized group
and the composition of groupoid:

(h1 ◦ g1)(h2 ◦ g2) = (h1h2) ◦ (g1g2).

Example 2.11. [8] If G is a generalized group, then G × G is a generalized group-
groupoid over G. Indeed, from Example 2.10 we know that G × G is a groupoid.
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Furthermore, since G is a generalized group, G ×G is also a generalized group with
the operation (x, y)(z, t) = (xz, yt). For an element (x, y), the identity and inverse
are defined by (e(x), e(y)) and (y−1, x−1), respectively.

On the other hand, the maps m, e, n for the generalized group G×G are groupoid
homomorphisms. Namely;

For the multiplication m of G×G, we have(
(z, y)(z

′
, y
′
)
)
◦
(

(y, x) (y
′
, x
′
)
)

=
(
zz
′
, yy

′
)
◦
(
yy
′
, xx

′
)

=
(
zz
′
, xx

′
)

and

((z, y) ◦ (y, x))
(

(z
′
, y
′
) ◦ (y

′
, x
′
)
)

= (zx) (z
′
x
′
) =

(
zz
′
, xx

′
)
.

Hence, the multiplication of G ×G is a groupoid homomorphism. It is easily shown
that the maps e and n are groupoid homomorphisms. So, G × G is a generalized
group-groupoid.

Definition 2.16. [8] Let G and H be generalized group-groupoids. A general-
ized group-groupoid homomorphism f : G → H is a homomorphism of underlying
groupoids such that generalized group structure is preserved.

Therefore, we obtain the category GG−Gd of the generalized group-groupoids and
their homomorphisms.

3. Topological generalized crossed modules

We will present here the topological version of the concept of generalized crossed mod-
ule. Also we will define the homomorphism of topological generalized crossed modules.
Thus we will reach to the category of topological generalized crossed modules.

Definition 3.1. An action of a topological generalized group G on a topological space
X is a continuous map · : G×X → X, (g, x) 7→ g·x satisfying the conditions
i) (g1g2)·x = g1

·(g2
·x), for all g1, g2 ∈ G and x ∈ X.

ii) For all x ∈ X, there is e(g) ∈ G such that e(g) ·x = x.

After this definition, let us state the topological generalized action of a topological
generalized group G on a topological generalized group H.

Definition 3.2. Let G and H be topological generalized groups. Then, if the gen-
eralized action · : G × H → H, (g, h) 7→ g ·h is continuous, we say it topological
generalized action.

Proposition 3.1. The semidirect product of two topological generalized groups is
again a topological generalized group.

Proof. Let H and G be topological generalized groups. Let us have a topological
generalized action of G on H below:

· : G×H → H, (g, h) 7→ g · h

Then, the semi-direct product GnH with the multiplication

(g, h)(g1, h1) = (gg1, h(g · h1))
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is a generalized group (see [8] for details). Obviously, the set G n H is a Hausdorff
space with the subspace topology induced from the product topology of G×H. Thus,
the semi-direct product G×H is a topological generalized group.

�

Now we can state the definition of a topological generalized crossed module.

Definition 3.3. Let C, G be two topological generalized groups and let η : C → G
be a homomorphism of topological generalized groups. Let us have a topological
generalized action of G on C. Then, we say that the triple (C,G, η) is a topological
generalized crossed module if the following conditions hold:
TGCM1) η(c · g) = gη(c)g−1, ∀c ∈ C and ∀g ∈ G
TGCM2) η(c) · c′ = cc

′
c−1, ∀c, c′ ∈ C.

Example 3.1. Let G be a topological generalized group and let N be its topological
generalized normal subgroup. Then we construct a topological generalized crossed
module (G,N, η = i) with the inclusion

η = i : N → G,n 7→ n

and the topological generalized action

G×N → N, (g, n) = g·n = gng−1.

Indeed, it is clear that (G,N, η = i) is a generalized crossed module by Example
4.2 of [8]. So, it is enough to show the continuity of η = i and the generalized action.
It is clear that the inclusion map i is continuous. Further, since the operation of
generalized action is the operation of the topological generalized group G, it is also
continuous. Consequently, the triple (G,N, η = i) is a topological generalized crossed
module.

Let us now define the notion of topological generalized crossed module homomor-
phism.

Definition 3.4. Let (H,G, η) and (H
′
, G
′
, η
′
) be topological generalized crossed mod-

ules, let (τ, µ) : (H,G, η) → (H
′
, G
′
, η
′
) be a generalized group homomorphism. If τ

and µ are continuous, then (τ, µ) is called a topological generalized group homomor-
phism.

Therefore, we obtain the category TGCM of the topological generalized crossed
modules.

4. Topological generalized group-groupoids

Here we give the topological version of the concept of generalized group-groupoid
defined in [8].

Definition 4.1. Let G be a generalized group-groupoid. If G is both a topological
groupoid and a topological generalized group such that the structure maps in Defini-
tion 2.15 are continuous, then we call G a topological generalized group-groupoid.

Example 4.1. If G is a topological generalized group, then G × G is a topological
generalized group-groupoid.
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By Example 2.11, G×G is a generalized group-groupoid. Furthermore, since G is
a Hausdorff space, G×G is a topological groupoid by [14]. Also, the set G×G with
the product topology and the operation

(x, y)(z, t) = (xz, yt)

defined by the multiplication of G is a topological generalized group. Finally, since the
generalized group structure maps of G×G are defined by the the structure maps of
the topological generalized group G, they are continuous. Thus, G×G is a topological
generalized group-groupoid.

Definition 4.2. Let G and H be topological generalized group-groupoids. A ho-
momorphism of the topological generalized group-groupoids is a continuous homo-
morphism f : G → H of the underlying groupoids preserving the generalized group
operation.

Thus, we obtain the category TGG − Gd of the topological generalized group-
groupoids and their homomorphisms.

The example above defines a functor from the category TGG to the category
TGG−Gd.

Proposition 4.1. There is a functor Γ : TGG→ TGG−Gd.

Proof. Let G be an object in TGG. By Example 4.1, G×G is a topological generalized
group-groupoid. If f : G1 → G2 is a topological generalized group homomorphism,
then

Γ(f) : G1 ×G1 −→ G2 ×G2

(a, b) 7−→ (f(a), f(b))

is also a topological generalized group-groupoid homomorphism. Namely, since f is a
topological generalized group homomorphism, Γ(f) = (f, f) preserves the generalized
group structure. Also, since f is continuous, Γ(f) = (f, f) is also continuous. On the
other hand, from the Example 2.11, we have

Γ(f)((z, y) ◦ (y, x)) = Γ(f)(z, y) ◦ Γ(f)(y, x).

Hence, Γ(f) is a topological generalized group-groupoid homomorphism. Conse-
quently, Γ is a functor.

�

Remark 4.1. In the next section, we are going to show that the category of topo-
logical generalized group-groupoids whose object sets are commutative topological
generalized groups is equivalent to the category TGCM . For this reason, at this
point, we need a warning: The category (denoted by TGG−Gd∗) of topological gen-
eralized group-groupoids whose object sets are commutative topological generalized
groups is full subcategory of the category of topological generalized group-groupoids.

5. Equivalence of the categories

Let us first show how a topological generalized crossed module from a topological
generalized group-groupoid G which object space is a commutative topological gen-
eralized group is obtained.
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Theorem 5.1. Every topological generalized group-groupoid G which object space is
a commutative topological generalized group induces a topological generalized crossed
module.

Proof. A generalized crossed module ϕ(G) = (A,B, η) inside a generalized group-
groupoid G of which object set is a commutative generalized group is algebraically
obtained by carrying out the following steps:
i) A = CoStGe(x), ∀x ∈ G0, is a generalized group.
ii) The set B = G0 is a generalized group.
iii) η : A→ B is a generalized group homomorphism.
iv) · : B ×A→ A is a generalized action.

Algebraic details of these steps are available in [8]. Hence, we here only show that
each of A and B is a topological generalized group and that both η and the generalized
action are continuous.

Since G is a topological generalized group-groupoid, G is a Hausdorff space. Since
the property of being a Hausdorff space is hereditary, the set A ⊂ G is also a Hausdorff
space with the subspace topology induced by G. Also, the target generalized group
B is clearly a topological generalized group. Because it is determined by G0.

The boundary map η is the restriction of the target map t of the topological
generalized group-groupoid G to A. Hence η is continuous, and so η : A → B is a
continuous generalized group homomorphism.

Finally, let us show that the generalized action defined by

· : B ×A→ A

(x,m) 7→ x ·m = 1xm1x.

is continuous. This action can be written as a composition of the maps in the following
way:

B ×A ε×I−→ G×A r−→ G
R1x−→ A

(x,m) 7→ (1x,m) 7→ 1xm 7→ 1xm1x,

where ε is the object map of the groupoid, I is the identity map, r is the restriction
of the multiplication of the generalized group G × G and R1x

is right translation.
Since each of these maps is continuous, the generalized action · : B × A → A is also
continuous.

Thus, (A,B, η) is a topological generalized crossed module.
�

Henceforth, we suppose that B is a commutative topological generalized group
and A is a topological normal generalized group such that e(a)b−1 = b−1e(a) for
any a, b ∈ A. Therefore, we have a category TGCM∗ of which objects are the
topological generalized crossed modules providing the conditions above. It is clearly
a full subcategory of TGCM .

Theorem 5.2. Every topological generalized crossed module (A,B, η) gives a topo-
logical generalized group-groupoid.

Proof. From Theorem 5.2 given in [8] we know that the generalized crossed module
(A,B, η) is a generalized group-groupoid together with object set B, morphism set
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BnA and groupoid structure maps defined as follows and at the same time generalized
group homomorphisms:

The source map : s : B nA→ B, s(b, a) = b
The target map : t : B nA→ B, t(b, a) = δ(a)b
The object map : For every a ∈ A, εa : B → B nA, εa(b) = (b, e(a))
The inverse map : i : B nA→ B nA, i(b, a) = (b, a)−1 =

(
η(a)b, a−1

)
.

The partial composition : ◦ : B nA×B nA→ B nA, (b1, a1) ◦ (b, a) = (b, a1a)
Clearly, the object set B of the topological generalized group-groupoid is topologi-

cal generalized group. Also, by Theorem 3.1, the morphism set BnA is a topological
generalized group.

The source map s is continuous, because it is the first projection. The target map
t can be written as

B ×A I×η−→ B ×B −→ B

(b, a) 7→ (b, η(a)) 7→ η(a)b.

Since I is the identity map and η is the topological generalized group homomorphism,
the continuity of the target map t is obvious.

The object map εa is obviously in the form of (I, ce(a)), here ce(a) is a constant
map. The continuity of εa immediately follows from the continuities of the identity
map I and the constant map ce(a).

The continuity of the inverse map i and the composition map are easily obtained
from that of the topological generalized group homomorphism η, generalized action
and the multiplication of topological generalized group A.

Thus, BnA is a topological generalized group-groupoid over B. See [8] for algebraic
details.

�

Theorem 5.3. The categories TGG−Gd∗ and TGCM∗ are equivalent.

Proof. Let M = (A,B, η) and M
′

= (A
′
, B
′
, η
′
) be topological generalized crossed

modules, and (τ, µ) : (A,B, η) → (A
′
, B
′
, η
′
) be a topological generalized crossed

module homomorphism. Thus, by Theorem 5.1, we have a functor θ : TGCM∗ →
TGG − Gd∗ which is defined by θ(τ, µ) = (µ × τ, µ) on morphisms and by θ(M) =
(B,B nA) on objects.

Let G and H be two topological generalized group-groupoids, and (f, f0) : G →
H be a topological generalized group-groupoid homomorphism. Thus, by Theorem
5.2, we have a functor Γ : TGG − Gd∗ → TGCM∗ which is defined by Γ(f, f0) =
(f |Kers, f0) on morphisms and by Γ(G) = (Kers,G0, t|Kers) on objects.

It is clear that Γθ ' 1TGCM∗ and θΓ ' 1TGG−Gd∗ . �

6. Conclusions

In this paper, using the concept of generalized group which was given by Molaei,
we have constructed the topological versions of the concepts of the crossed module
over generalized groups and of the generalized group-groupoid. Also, we have showed
that the category of topological generalized crossed modules is equivalent to that of
topological generalized group-groupoids whose object sets are commutative topolog-
ical generalized groups. In algebraic topology, there are a number of categories such
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as double groupoid, 2-groupoid etc. in which the category of crossed modules over
groups is equivalent. We have shown the topological version of one of these equiva-
lents using generalized groups. Other researchers can study these equivalencies based
on groups in terms of generalized groups. Therefore, this paper is a preliminary study
for these equivalences.
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Signed double Roman domination numbers in digraphs

Jafar Amjadi and Fatemeh Pourhosseini

Abstract. Let D = (V,A) be a finite simple digraph. A signed double Roman dominating

function (SDRD-function) on the digraph D is a function f : V (D) → {−1, 1, 2, 3} satisfying
the following conditions: (i)

∑
x∈N−[v] f(x) ≥ 1 for each v ∈ V (D), where N−[v] consist of

v and all in-neighbors of v, and (ii) if f(v) = −1, then the vertex v must have at least two

in-neighbors assigned 2 under f or one in-neighbor assigned 3, while if f(v) = 1, then the

vertex v must have at least one in-neighbor assigned 2 or 3. The weight of a SDRD-function f
is the value

∑
x∈V (D) f(x). The signed double Roman domination number (SDRD-number)

γsdR(D) of a digraph D is the minimum weight of a SDRD-function on D. In this paper we

study the SDRD-number of digraphs, and we present lower and upper bounds for γsdR(D)
in terms of the order, maximum degree and chromatic number of a digraph. In addition, we

determine the SDRD-number of some classes of digraphs.

2020 Mathematics Subject Classification. Primary 05C20; Secondary 05C69.

Key words and phrases. Digraph, signed double Roman dominating function, signed double

Roman domination number, directed graph.

1. Introduction

Let G be a finite and simple graph with vertex set V (G), and let NG(v) = N(v) be
the open neighborhood of the vertex v. A signed double Roman dominating function
(SDRD-function) on a graph G is defined in [2] as a function f : V (G) −→ {−1, 1, 2, 3}
such that (i) every vertex v with f(v) = −1 is adjacent to least two vertices assigned a
2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent
to at least one vertex w with f(w) ≥ 2 and (iii) f(N [v]) =

∑
x∈N [v] f(x) ≥ 1 holds for

each vertex v ∈ V (G). The signed double Roman domination number γsdR(G) of G is
the minimum weight of a SDRD-function on G. This parameter has been studied in
[1, 3, 7, 9]. A γsdR(G)-function is a SDRD-function on G of weight γsdR(G). Following
the ideas in [2], we study the SDRD-functions on digraphs D.

Suppose D is a finite simple digraph with vertex set V (D) and arc set A(D)
(briefly V and A). The order and the size of D are integers n = n(D) = |V (D)| and
m = m(D) = |A(D)| respectively. If uv is an arc of D, then we also write u → v,
and we say that v is an out-neighbor of u and u is an in-neighbor of v and we also
say that x dominate y. For each vertex v, the set of in-neighbors and out-neighbors
of v are denoted by N−(v) = N−D (v) and N+(v) = N+

D (v), respectively. Assume

that N−D [v] = N−[v] = N−(v) ∪ {v} and N+
D [v] = N+[v] = N+(v) ∪ {v}. We write

d+(v) = d+
D(v) for the out-degree of a vertex v and d−(v) = d−D(v) for its in-degree.

We denote the minimum and maximum in-degree and the minimum and maximum
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out-degree of D by δ−(D) = δ−, ∆−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆+,
respectively. A digraph D is called r-out-regular if δ+(D) = ∆+(D) = r. In addition,
suppose δ = δ(D) = min{δ+(D), δ−(D)} and ∆ = ∆(D) = max{∆+(D),∆−(D)} is
the minimum and maximum degree of D, respectively. A digraph D is called regular
or r-regular if δ(D) = ∆(D) = r. The distance dD(u, v) from a vertex u to a vertex
v is the length of a short directed u− v path in D. For every set X ⊆ V (D), D[X] is
the subdigraph induced by X. For a real-valued function f : V −→ R the weight of f
is ω(f) =

∑
v∈V f(v), and for S ⊆ V , we write f(S) =

∑
v∈S f(v), so ω(f) = f(V ).

Consult Haynes et al. [5] for the notation and terminology which are not defined here.
A signed double Roman dominating function (SDRD-function) on a digraph D is

a function f : V −→ {−1, 1, 2, 3} such that (i) f(N−[w]) =
∑
x∈N−[w] f(x) ≥ 1 for

each vertex w ∈ V and (ii) every vertex u for which f(u) = −1 has at least one
in-neighbor z with f(z) = 3 or to at least two in-neighbor v for which f(v) = 2,
(iii) every vertex v with f(v) = 1 has at least one in-neighbor z with f(z) ≥ 2. The
weight of a SDRD-function f on a digraph D is ω(f) =

∑
v∈V (D) f(v). The signed

double Roman domination number (SDRD-number) γsdR(D) is the minimum weight
of a SDRD-function on D. A γsdR(D)-function is a SDRD-function on D of weight
γsdR(D).

In this paper we initiate the study of the signed double Roman domination number
of digraphs, and we establish lower and upper bounds for γsdR(D) in terms of the
order, maximum degree and chromatic number of a directed graph. In addition, we
determine the SDRD-number of some classes of digraphs.

The associated digraph of a graph G, denoted by D(G) = G∗, is defined as a digraph
obtained from G if each edge e of G is replaced by two oppositely oriented arcs with
the same ends as e. Since N−D(G)[v] = NG[v] for each vertex v ∈ V (G) = V (D(G)),

we have the next result.

Remark 1.1. If D(G) is the associated digraph of a graph G, then γsdR(D(G)) =
γsdR(G).

In [2], the authors determine the SDRD-number of some classes of graphs including
complete graphs, complete bipartite graphs and cycle.

Theorem A. If n 6= 4, then γsdR(Kn) = 1 and γsdR(K4) = 2.

Theorem B. For 2 ≤ m ≤ n,

γsdR(Km,n) =


3 if m = 2 and n ≥ 3

4 if m ≥ 4 or m = n = 2

5 if m = 3.

Theorem C. For n ≥ 3,

γsdR(Cn) =


n
3 if n ≡ 0 (mod 3)

dn3 e+ 2 if n ≡ 1 (mod 3)

dn3 e+ 1 if n ≡ 2 (mod 3) .

Using Remark 1.1 and Propositions A, B and C we obtain next result.

Corollary 1.1. (1) If n 6= 4, then γsdR(K∗n) = 1 and γsdR(K∗4 ) = 2.
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(2) For 2 ≤ m ≤ n,

γsdR(K∗m,n) =


3 if m = 2 and n ≥ 3

4 if m ≥ 4 or m = n = 2

5 if m = 3.

(3) For n ≥ 3,

γsdR(C∗n) =


n
3 if n ≡ 0 (mod 3)

dn3 e+ 2 if n ≡ 1 (mod 3)

dn3 e+ 1 if n ≡ 2 (mod 3) .

A double Roman dominating function (DRD-function) on D is defined in [6] as a
function f : V −→ {0, 1, 2, 3} such that (i) every vertex u for which f(u) = 0 has
at least one in-neighbor z with f(z) = 3 or to at least two in-neighbor v for which
f(v) = 2, (ii) every vertex v with f(v) = 1 has at least one in-neighbor z with f(z) ≥ 2.
The weight of a DRD-function f on a digraph D is ω(f) =

∑
v∈V (D) f(v). The double

Roman domination number (DRD-number) γsdR(D) is the minimum weight of an
DRD-function on D. A γdR(D)-function is a DRD-function on D of weight γdR(D).
The proof of the next two results can be found in [6].

Theorem D. For any digraph D, there is a γdR(D)-function such that no vertex
needs to be assigned the value 1.

Theorem E. For any digraph D,

2γ(D) ≤ γdR(D) ≤ 3γ(D).

The proof of the following result can be found in Szekeres-Wilf [8].

Theorem F. For any graph G,

χ(G) ≤ 1 + max{δ(H) | H is a subgraph of G}.

2. Basic Properties

In this section we investigate basic properties of the SDRD-functions and the SDRD-
numbers of digraphs. The definitions immediately lead to our first proposition.

Proposition 2.1. For any SDRD-function f = (V−1, V1, V2, V3) on a digraph D of
order n,
(a) |V−1|+ |V1|+ |V2|+ |V3| = n.
(b) ω(f) = |V1|+ 2|V2|+ 3|V3| − |V−1|.
(c) V2 ∪ V3 is a dominating set of D. In particular, |V2 ∪ V3| ≥ γ(D) where γ(D) is

the domination number of D.

Proposition 2.2. If f = (V−1, V1, V2, V3) is a SDRD-function on a digraph D of
order n with maximum out-degree ∆+ and minimum out-degree δ+, then

(i) (3∆+ + 2)|V3|+ (2∆+ + 1)|V2|+ ∆+|V1| ≥ (δ+ + 2)|V−1|.
(ii) (3∆+ + δ+ + 4)|V3|+ (2∆+ + δ+ + 3)|V2|+ (∆+ + δ+ + 2)|V1| ≥ n(δ+ + 2).
(iii) (∆+ + δ+ + 2)ω(f) ≥ n(δ+ −∆+ + 2) + (δ+ −∆+)(2|V3|+ |V2|).
(iv) ω(f) ≥ n(δ+ − 3∆+)/(3∆+ + δ+ + 4) + |V2|+ 2|V3|




